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studies? Presumably the underlying psychological reality 
itself has not changed over time, so there are only two 
possibilities. One possibility is that small-sample studies 
are—counterintuitively and in defiance of their much 
lower cost and much more rapid execution—actually the 
methodologically more rigorous investigations. In fact, 
contemporary large-scale studies must be so much slop-
pier than their traditional counterparts that effects once 
consistently detected with convenience samples of just a 
few dozen subjects are no longer detectable at all in data-
sets several orders of magnitude larger.

We think it is safe to say that this is not a plausible 
explanation.

The other possibility is that the results generated by 
small-sample studies tend to be massively overfitted. It is 
surprisingly easy to fool oneself into believing and/or 
reporting results that are simply not true, and as dis-
cussed above, it is easier to fool oneself when samples 
are small than when they are large (cf. Fig. 4). From this 
perspective, there is nothing at all mysterious about the 
gradual decay of initially exciting effects (which some 
have dramatically dubbed the “Decline Effect”; Lehrer, 
2010). It simply reflects the fact that small samples neces-
sarily produce more variable estimates than large sam-
ples (Gelman & Weakliem, 2009; Ioannidis, 2008; Yarkoni, 
2009) and that, given the strong prevailing bias in favor 

Fig. 4.  Large samples guard against overfitting. See text for explanation. 
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of positive, large, or otherwise “interesting” effects 
(Nosek, Spies, & Motyl, 2012), it is the larger effects that 
tend to get published. In other words, the reason effect 
sizes in many domains have shrunk is that they were 
never truly big to begin with, and it is only now that 
researchers are routinely collecting enormous datasets 
that we are finally in a position to appreciate that fact.3

The obvious implication is that, if we’re serious about 
producing replicable, reliable science, we should gener-
ally favor small effects from large samples over large 
effects from small samples. (Of course, large effects from 
large samples are even better, on the rare occasions that 
we can obtain them.) In fact, in many cases, there is a 
serious debate to be had about whether it is scientifically 
useful to conduct small-sample research at all. In many 
domains, where data collection is costly and most 
research is conducted by small, independent labs, it is 
difficult to obtain anything but relatively small samples. 
Although there is a widespread belief that “anything is 
better than nothing” and that “we have to start some-
where,” given the various problems we’ve reviewed—
many of which would simply not have arisen in larger 
samples—we think this view warrants considerable 
skepticism.

One alternative to conducting small-sample research 
would be for researchers to participate in large, multilab, 
collaborative projects (Ebersole et al., 2015; Klein et al., 
2014). Another would be to conduct novel analyses on 
some of the existing large datasets that are available to 
researchers, such as the Human Connectome Project 
(Van Essen et al., 2013) or 1000 Functional Connectomes 
(Biswal et al., 2010) datasets in functional magnetic reso-
nance imaging (fMRI), lexical corpora such as the English 
Lexicon Project (Balota et al., 2007) or Lexique (New, 
Pallier, Brysbaert, & Ferrand, 2004) in psycholinguistics, 
or the American National Election Studies (ANES) data-
base in political psychology (electionstudies.org), to 
name just a few. Such resources remain greatly underuti-
lized in psychology, often under the assumption that the 
benefits of having complete experimental control over 
one’s study outweigh the enormous increase in estima-
tion variance and associated risk of overfitting. But as we 
have shown above, the recent proliferation of modest 
effect sizes from large, expensive studies is not a sign that 
we have entered an era of incremental, uncreative psy-
chological science; rather, it’s the mark of a field under-
going a painful but important transition toward 
widespread adoption of truth-supporting procedures. 
From this perspective, the rapid introduction of Big Data 
approaches to many areas of psychology stands to pro-
vide a much-needed corrective to decades of overfitted, 
high-profile results that have systematically distorted 
many researchers’ intuitions and expectations.

Cross-Validation

From independent replication to 
K-folds
To ensure good predictive performance, one must have a 
way of objectively evaluating the performance of any 
models trained on one’s data—that is, of quantifying the 
out-of-sample prediction error. In machine learning,  
the most common—indeed, nearly universal—approach 
to estimating prediction error is cross-validation. Cross-
validation refers to a family of techniques that involve 
training and testing a model on different samples of data 
(Browne, 2000; Shao, 1993). Although the explicit use of 
cross-validation to quantify generalization performance is 
largely absent from contemporary psychological science, 
the practice has deep roots in the field. As early as the 
late 1940s, psychologists in a variety of disciplines were 
strongly advocating the use of cross-validation or compa-
rable analytical corrections as a means of combatting 
shrinkage in multiple regression (Kurtz, 1948; Mosier, 
1951; Schmitt, Coyle, & Rauschenberger, 1977; Wherry, 
1951, 1975). Mosier (1951) went so far as to observe that 
“if the combining weights of a set of predictors have 
been determined from the statistics of one sample, the 
effectiveness of the predictor-composite must be deter-
mined on a separate, independent sample. This is the 
case whether the combining weights are multiple-regres-
sion beta weights or item-analysis weights of one or zero” 
(p. 5; original italics).

The canonical example of cross-validation is, of 
course, the classical replication setup, where a model is 
trained on one dataset and then tested on a completely 
independent dataset. Indeed, independent replication 
has historically been psychologists’ favored method for 
establishing the validity or generality of a finding—albeit 
from a hypothesis-testing perspective rather than a pre-
dictive-modeling perspective (i.e., the typical approach is 
to test whether the same qualitative pattern of results 
holds in two separate samples rather than to train a 
model in one sample and then test its quantitative predic-
tions in a second sample). Unfortunately, independent 
replication is not always a scalable strategy for ensuring 
the reliability of a literature: At best, it requires the acqui-
sition of large amounts of new data, which may be 
impractical and expensive; at worst, years or even 
decades may elapse before a finding is convincingly 
refuted or discredited, allowing considerable waste of 
scientific resources in the interim (Greenwald, 2012; 
Ioannidis, 2012).

Rather than resorting to the acquisition of new data, 
modern applications of cross-validation typically adopt 
alternative approaches that provide most of the benefit of 
true replication at no extra cost. The basic premise can 
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be captured in two simple insights. The first insight is that 
one can turn a single dataset into two nominally inde-
pendent datasets rather easily: One simply has to ran-
domly split the original dataset into two sets—a training 
dataset and a test dataset. The training half is used to fit 
the model, and the test half is subsequently used to 
quantify the test error of the trained model. The estimate 
from the test dataset will then more closely approximate 
the true out-of-sample performance of the model.4 Of 
course, this isn’t an ideal solution, because instead of 
doubling data collection costs, we’ve simply halved 
(roughly) our statistical efficiency. The reduction in over-
fitting—obtained by ensuring that no single data point is 
used in both the training and evaluation of a model—
now comes at the cost of a propensity to underfit, 
because the training sample is smaller, and hence the 
fitted model is not as stable as it would be with a larger 
sample (cf. Fig. 4).

Fortunately, this problem can be mostly ameliorated 
via a second insight—namely, that it is possible to effec-
tively “recycle” one’s dataset. That is, instead of assigning 
each observation exclusively to either the training or the 
test datasets, one can do both, by repeating the cross-
validation twice. In one “fold” of the analysis, one half of 
the data is used for training and the other half for testing; 
in a second fold, the datasets are reversed, and the train-
ing set and test sets exchange roles. The overall model 
performance is then computed by averaging the test per-
formance scores of the two folds, resulting in a single 
estimate that uses all of the data for both training and 
testing yet never uses any single data point for both. 
More generally, this approach is termed K-fold cross-
validation, where K, the number of “folds,” can be any 
number between 2 and the number of observations in 
the full dataset (but is most commonly set to a value in 
the range of 3 to 10). When K is equal to the sample size 
n—so that the model is fit n times, each time predicting 
the score for only a single held-out subject—the proce-
dure is commonly referred to as leave-one-out cross-
validation (LOOCV).

Cross-validated model estimation

K-fold cross-validation is a simple but extremely powerful 
technique. It provides a minimally biased way of estimat-
ing the true generalization performance of any model. In 
general, the overfitting observed when using the same 
data to both train and test a model will largely disappear 
when cross-validation is applied, and the cross-validated 
estimate of a model’s generalization performance will (on 
average) typically be very close to the true out-of-sample 
performance. Importantly, cross-validation can be applied 
to virtually any statistical estimation procedure, whereas 
analytical estimates (e.g., the Aikake Information Criterion, 

or AIC; Vrieze, 2012) are only available for a restricted set 
of models under fairly idealized assumptions. Thus, cross-
validation is particularly useful in cases when the com-
plexity of a model is high relative to the amount of 
available data—as is common, for example, in many struc-
tural equation modeling (SEM) applications. In such cases, 
it can come as a shock to discover that a model that 
appears to fit one’s data very well according to various 
goodness-of-fit indices can fare very poorly when tested 
out-of-sample (Browne, MacCallum, Kim, Andersen, & 
Glaser, 2002). Surprisingly (or, if one is cynically inclined, 
perhaps not surprisingly), explicit cross-validation of com-
plex structural models remains almost entirely absent from 
the social science literature (Holbert & Stephenson, 2002).

Cross-validated model selection

Importantly, cross-validation approaches can help guard 
not only against overfitting that arises during model esti-
mation but also against procedural overfitting or p-hacking. 
Recall that p-hacking occurs whenever a researcher 
decides to use one procedure rather than another based, 
at least in part, on knowledge of the respective outcomes. 
For example, a researcher might inspect her data, observe 
that scores are highly positive skewed, and then alter-
nately try out log-transformation and winsorization of the 
data—ultimately retaining the former approach when it 
produces “better” results. The tension lies in the fact that, 
although the decision to choose from among multiple 
possible procedures based on their respective outcomes 
entails a certain amount of overfitting, it nevertheless 
seems reasonable to allow researchers to “follow the data” 
where they lead rather than blindly applying a predeter-
mined set of procedures.

Judicious use of cross-validation during model selec-
tion can, in principle, provide a compromise between 
these two positions. The simplest approach is to obtain a 
cross-validated estimate of model performance under 
each possible analysis approach (e.g., for log-transforma-
tion versus winsorization of the data) and then select the 
approach that produces the best cross-validated results. 
This approach will reduce, though not outright eliminate 
(for reasons discussed below), overfitting. More sophisti-
cated approaches involving nested cross-validation or 
alternative decision rules for selecting among cross-
validated models are also available (for discussion, see 
Varma & Simon, 2006, as well as the online Python and R 
tutorials we have made available at http://github.com/
tyarkoni/PPS2016).

Lastly, in cases where researchers are fortunate enough 
to have very large datasets with which to work, the stron-
gest approach (though one that requires considerable 
self-discipline) is to set aside a subset of the full dataset 
as a true test sample. This hold-out dataset must not be 
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inspected until all analysis is complete and the researcher 
is ready to report the final results. Provided this stringent 
criterion is adhered to, researchers are free to exercise as 
much flexibility as they like, because any overfitting 
incurred during analysis will have to be paid back in full 
(in the form of disappointing results) when the final 
model is applied to the independent test data.

Limitations

Naturally, cross-validation is not a panacea and has a 
number of limitations worth keeping in mind. First, when 
working with complex models or large datasets, K-folds 
cross-validation can be computationally expensive, as 
each model must be fit K times instead of just once 
(although for simple estimators such as linear regression 
coefficients, analytic computation of cross-validated 
model performance is possible). Second, for reasons 
related to the bias-variance tradeoff discussed earlier, 
cross-validation is not completely unbiased and will 
sometimes underestimate the true out-of-sample perfor-
mance. Third, under most implementations, cross-valida-
tion produces nondeterministic results. This is arguably 
not a real weakness at all, inasmuch as estimation uncer-
tainty is a fact of life; however, researchers used to think-
ing of p < .05 as a binary decision criterion for the 
“realness” of an effect may initially struggle to acclimate 
to a world where p = .04 in one iteration can turn into  
p = .07 in another.

Lastly, and most importantly, the ability to easily cross-
validate virtually any data analysis procedure is not a 
license to experiment with any and all analyses that cross 
one’s mind. It is important to recognize that standard 
concerns about p-hacking or data-contingent analysis still 
apply (albeit to a lesser extent). Cross-validation will only 
control overfitting appropriately so long as any researcher 
degrees of freedom are included within the cross-valida-
tion loop (Varma & Simon, 2006). In other words, 
researchers should ideally embed any model selection 
steps into the cross-validation procedure itself, rather 
than simply picking the model that gives the best cross-
validated result (for further explanation, see Cawley & 
Talbot, 2010; Krstajic, Buturovic, Leahy, & Thomas, 2014; 
Varma & Simon, 2006). Care should also be taken to 
avoid “leakage” of information between training and test 
datasets, which can manifest in subtle but pernicious 
ways. For example, even a seemingly innocuous step like 
standardizing the columns of an entire dataset prior to 
cross-validated analysis can lead to overfitting (because 
the rows that comprise the test set have already been 
scaled based in part on knowledge of the values in the 
training set).

Despite these limitations, the importance of integrating 
cross-validation into most analysis pipelines is difficult to 

overstate. In applied machine learning settings, some 
form of cross-validation is practically mandatory when 
reporting the results of a predictive model. Adopting simi-
lar conventions in psychology would likely go a long way 
toward improving the reliability of reported findings. Con-
veniently, simple implementations of cross-validation can 
often be written in just a few lines of code, and off-the-
shelf utilities are available for many languages and statisti-
cal packages. We have made interactive examples written 
in Python and R available online (http://github.com/ 
tyarkoni/PPS2016).

Regularization

Cross-validation provides a means of estimating how 
capably a model can generalize to new data. However, it 
does not directly prevent overfitting (though it can do so 
indirectly—e.g., by facilitating better model selection). If 
a model is overfitting the data, the main contribution of 
cross-validation will be to inform the model’s author that 
the model is overfitting. Although such knowledge is 
undeniably useful, the fact remains that sometimes 
researchers want to actually improve their models and 
not just to know that the existing ones are performing 
inadequately. Here, another approach, called regulariza-
tion, can potentially be of greater utility.

Regularization consists of trying to improve a statistical 
prediction by constraining one’s model to respect prior 
knowledge. In practice, regularization in machine learn-
ing is most commonly accomplished by increasingly 
“penalizing” a model (technically, penalizing the cost 
function) as it grows more complex. That is, in addition 
to the standard objective(s) that a model is supposed to 
achieve, the estimation is also constrained to produce 
solutions that, other things being equal, are considered 
“simpler.” For example, in linear regression estimated via 
OLS—the foundation of most statistical analysis in psy-
chology—the goal of the estimation is to identify the set 
of coefficients that minimizes the sum of squared devia-
tions between the observed scores and the model’s pre-
dictions. In a widely used form of penalized regression 
called lasso regression (Tibshirani, 1996, 2011), this least-
squares criterion is retained, but the overall cost function 
that the estimation seeks to minimize now includes an 
additional penalty term that is proportional to the sum of 
the absolute values of the coefficients. In other words, 
the estimation of the regression model now has to find a 
set of coefficients that give an optimal compromise (opti-
mal in the sense of minimizing the cost function) between 
the two competing goals of (a) minimizing the sum-of-
squares and (b) having as small an absolute sum as pos-
sible. These two criteria are typically in tension with one 
another, because the more complex a model is allowed 
to be (e.g., the more nonzero coefficients it is allowed to 



14	 Yarkoni, Westfall

retain), the more variance it can explain in the observed 
scores, but this implies a larger sum of absolute coeffi-
cients. Thus, we once again see echoes of the bias-
variance tradeoff discussed above: Relative to OLS, lasso 
regression produces intentionally biased coefficients.

To intuitively see how a penalized regression method 
like the lasso can help reduce overfitting, consider how 
the behavior of OLS is impacted by the addition of the 
aforementioned penalty parameter. In the traditional 
(unpenalized) setting, linear regression virtually always 
produces a nonzero coefficient for every term in the 
model—because there is always some small statistical 
association between every predictor and the outcome 
variable. In contrast, the lasso will tend to “shrink” small 
coefficients to zero, because the net benefit of including 
each additional term in the prediction equation is coun-
terbalanced by an increase in the penalty term (i.e., the 

sum of the absolute values of all coefficients). In practice, 
a coefficient will only be retained if its incremental pre-
dictive utility is sufficiently large to offset the increment 
to the penalty. Precisely how large depends on the size 
of a penalty parameter that is under the analyst’s control. 
As the analyst increases the penalty parameter, the fitted 
model will be increasingly sparse (i.e., have more coef-
ficients estimated to be 0), because the model increas-
ingly prioritizes the reduction of the penalty term over 
the standard least-squares criterion. This shift is illustrated 
in the coefficient path diagram displayed in Figure 5, 
where coefficients steadily shrink as the penalty rises and 
eventually disappear entirely (i.e., go to 0) if the penalty 
is large enough.

Why would researchers opt for regularized forms of 
their favorite statistical methods (e.g., OLS regression)? 
The answer is that, in many cases, regularized predictions 

Fig. 5.  Regularization via the lasso. Training/test performance of OLS and lasso regression in two sample datasets illustrate some of the conditions 
under which the lasso will tend to outperform OLS. (A) In the “dense” dataset with a low n to p ratio, the sample size is small (n = 100), and there 
are many predictors (p = 50), each of which makes a small individual contribution to the outcome. (B) In the “sparse” dataset with a high n to p 
ratio, the sample is large (n = 1000), the number of predictors is small (p = 20), and only a few (5) variables make nonzero (and large) contributions. 
The top panels display the coefficient paths for the lasso as the penalty parameter (x axis) increases (separately for each simulated dataset). Observe 
how predictors gradually drop out of the model (i.e., their coefficients are eventually reduced to 0) as the penalty rises and the lasso model increas-
ingly values the sparsity of the solution over the minimization of prediction error. The bottom panels display the total prediction error (measured 
with mean squared error) in the training (dashed lines) and test (solid lines) samples for both OLS (yellow) and lasso (blue) regression. Observe 
that, in the small, dense dataset, where the number of predictors is high relative to the sample size, OLS grossly overfits the data (the gap between 
the solid and dashed yellow lines is very large) and is outperformed by the lasso in the test data for a wide range of penalty settings (the solid blue 
line is below the solid yellow line for the entire x axis range). By contrast, when the sample size is large relative to the number of predictors, the 
performance gap is typically small, and lasso only outperforms OLS for narrowly tuned ranges of the penalty parameter, if at all. 
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will generalize much better to new data. The biggest ben-
efits are typically obtained when the number of potential 
predictors p is large relative to the sample size n—a situ-
ation that is not uncommon in many areas of psychology 
(e.g., personality, developmental, educational, relation-
ship research). Under such conditions, OLS tends to 
grossly overfit the training data, whereas a regularized 
approach like lasso regression will tend to perform much 
better for almost any reasonable value of the penalty 
parameter (e.g., Fig. 5A). The intuition for this is closely 
tied to the bias-variance tradeoff discussed earlier. When 
the number of available predictors is large relative to the 
number of observations, OLS regression will tend to 
overfit the data, because the odds are high that some of 
the many available predictors will happen to capture 
some variation in the training sample observations purely 
by chance. In other words, the variance of the solutions 
produced by OLS will be high (though the bias is low). 
The lasso, by contrast, is constrained to only retain coef-
ficients with large values. By formally introducing bias in 
this way, the analyst is in effect telling the lasso regres-
sion model to ignore small variations in the data and only 
pay attention to relatively strong patterns—which are, 
generally speaking, more likely to generalize to new 
samples.

Of course, as we noted earlier, there is no such thing 
as a free lunch. The downside of using a regularized 
method like lasso regression is that, under data-rich con-
ditions, careful tuning of the penalty parameter may be 
required in order to obtain better out-of-sample perfor-
mance. Worse, careless application can result in much 
higher out-of-sample prediction error (as is apparent, for 
instance, in Fig. 5B for very high values of the penalty 
parameter). Thus, our overarching point is not that 
researchers should always use regularized methods but 
that a thoughtful analyst should adapt her methods to the 
problem at hand. In some cases, OLS and other tradi-
tional analysis tools in psychology will be perfectly ade-
quate for the job; in other cases, application of traditional 
methods will result in catastrophically poor predictions 
that could have been easily avoided through application 
of common machine learning methods. Our argument is 
simply that psychologists should be sufficiently familiar 
with the latter methods to be able to apply them in cases 
where they are clearly indicated.

Psychology as a Predictive Science

Having introduced a number of core machine learning 
concepts and discussed their relation to traditional psy-
chological approaches, we now turn to consider concrete 
applications. In this section, we review machine learning 
applications to psychological research that go beyond 
the simple (though important) observation that large 

samples and routine cross-validation are critical in order 
to limit overfitting. We begin with applications that are 
relevant primarily to applied researchers and then con-
sider ways in which machine learning can be used to 
inform and advance psychological theory. In interactive 
notebooks made available online (http://github.com/
tyarkoni/PPS2016), we also provide sample Python and R 
code that illustrates the application of many of the meth-
ods described throughout this paper.

Predicting for the sake of prediction

In much of psychology, researchers privilege theoretical 
understanding over concrete prediction. However, in 
many applied domains—for example, much of industrial-
organizational psychology, educational psychology, and 
clinical psychology—achieving accurate prediction is 
often the primary stated goal of the research enterprise. 
For example, the finding that the personality trait of Con-
scientiousness is robustly associated with better academic 
performance (Poropat, 2009) appears important in large 
part because it seems to offer the promise of improved 
educational outcomes. As Poropat (2009) observed in 
motivating a large meta-analysis of personality and aca-
demic performance:

Apart from its theoretical value, there is considerable 
practical value in being able to statistically predict 
academic performance. Among the member countries 
of the Organisation for Economic Cooperation and 
Development (OECD), an average of 6.2% of gross 
domestic product is spent on educational activities, 
while the average young person in these countries 
will stay in education until the age of 22 (OECD, 
2007). Clearly, the academic performance of students 
is highly valued within these advanced economies, 
such that any increments in understanding of 
academic performance have substantial implications. 
(p. 323)

Although we find such reasoning compelling in prin-
ciple, as a practical matter, it is unclear what the actual 
implications are of observing a meta-analytic correlation 
of 0.19 between Conscientiousness and academic perfor-
mance. A key problem is that very few studies in this lit-
erature, or in other applied psychology domains, ever 
report cross-validated indices of predictive accuracy. 
Although we do not pretend to think that cross-validation 
alone is sufficient to bridge the gap between research 
study and real-world application, it is a critical step in the 
right direction. We suggest that applied psychologists 
should develop the habit of reporting cross-validated 
results alongside standard goodness-of-fit metrics or sta-
tistical significance tests whenever possible—ideally in 
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predictively meaningful units (e.g., the proportion of mis-
classified patients, or the average error in predicted class 
grade).

Using machine learning techniques 
instrumentally

Machine learning concepts and techniques can often 
increase the efficiency and reproducibility of a research-
er’s analysis pipeline even when they do not appreciably 
alter the end result. A common use case occurs when 
researchers seek to demonstrate the reliability of a par-
ticular measure by appealing to its convergence with 
other measures and/or its consistency across different 
raters. In such cases, a demonstration that a variable can 
be accurately predicted out-of-sample using any number 
of other available variables can achieve essentially the 
same ends much more efficiently. For example, Du, Tao, 
and Martinez (2014) proposed that, in addition to the six 
“basic” facial emotional expressions of happiness, sur-
prise, sadness, anger, fear, and disgust (Ekman, 1992), 
human beings can reliably produce and detect additional 
compound expressions. After having 230 participants 
produce 15 such expressions (e.g., happily surprised, 
happily disgusted, sadly fearful, etc.), Du et al. used 
10-fold cross-validated kernel discriminant analysis to 
demonstrate that these expressions could be discrimi-
nated from one another with approximately 75% accu-
racy, lending credence to the idea that facial expressions 
of compound emotions can indeed convey information 
about more complex emotional states than have typically 
been considered in the literature. Although a similar con-
clusion could presumably be achieved by obtaining rat-
ings from human subjects, the use of an automated 
classifier is considerably more efficient, reproducible, 
and extensible (e.g., one would not have to recruit new 
raters when new photos were added to the stimulus set).

The same approach can also be profitably applied in 
cases where manual efforts would be hopelessly imprac-
tical. For example, Yarkoni, Ashar, and Wager (2015) 
studied how individual differences in the personality trait 
of Agreeableness modulate people’s responses to appeals 
for charitable donation. To maximize statistical power 
and support more generalizable conclusions ( Judd, 
Westfall, & Kenny, 2016; Westfall, Kenny, & Judd, 2014), 
the authors opted to dynamically generate every stimulus 
at presentation time by combining constituent elements 
into a never-before-seen composite. This decision intro-
duced an analytical challenge, however: Because each 
stimulus was only ever seen by a single subject on a 
single trial, how could the stimuli be reliably normed? 
The author solved the problem by using machine learn-
ing techniques to predict the expected rating of each 
composite stimulus based on the mean ratings of the 

constituent elements. Cross-validated analyses demon-
strated good predictive accuracy, enabling the authors to 
use the resulting norms in their subsequent analyses. 
Needless to say, obtaining human ratings for nearly 5,000 
different stimuli would have been considerably more 
challenging.

Evaluating model performance using 
consensus metrics

One attractive feature of predictive accuracy as a criterion 
for evaluating models is that it can serve as a common 
metric for comparing the performance of radically 
different, nonnested statistical models. A somewhat tradi-
tional way to compare nonnested models is to rely on  
the Aikake Information Criterion (AIC) or Bayesian 
Information Criterion (BIC), but these are subject to a 
variety of somewhat complicated assumptions (Burnham 
& Anderson, 2004; Vrieze, 2012) and in any case can only 
be computed for models that have a tractable likelihood 
function, which is not the case for many commonly used 
machine learning algorithms (e.g., random forests). A 
focus on predictive accuracy can provide a simple, gen-
eral solution that largely sidesteps such issues. We believe 
most researchers can agree that a good model should be 
able to accurately predict new observations—and, other 
things being equal, better models should generate better 
predictions.

An emphasis on predictive accuracy measures has 
played a central role in facilitating rapid progress in 
machine learning (Donoho, 2015). Many machine learn-
ing researchers now evaluate their models primarily by 
assessing their performance on large “gold standard” 
datasets (e.g., the ImageNet database in computer vision; 
Deng et al., 2009). Importantly, the presence of consen-
sus metrics for model evaluation has not led researchers 
to abdicate theoretically motivated work in favor of brute 
force computation or trial-and-error experimentation. To 
the contrary, most major breakthroughs in prediction 
accuracy over the past decade—particularly in the area of 
deep learning—can be traced directly to important new 
computational or theoretical insights (for review, see 
LeCun, Bengio, & Hinton, 2015; Schmidhuber, 2015). We 
believe that many fields in psychology would benefit 
from a similar approach. Indeed, a similar trend is already 
evident in some domains; for example, the development 
of large psycholinguistic databases such as the English 
Lexicon Project (Balota et al., 2007) has provided 
researchers with a powerful and widely used benchmark 
for evaluating new measures and models (e.g., Brysbaert 
& New, 2009; Yarkoni, Balota, & Yap, 2008). And just as 
in machine learning, the production of new models that 
explain ever more variance in behavioral tasks like word 
naming has been guided by, and reciprocally informs, 
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psycholinguistic theory (e.g., Baayen, Milin, Đurd̄ević, 
Hendrix, & Marelli, 2011; Perry, Ziegler, & Zorzi, 2010; 
Yap, Balota, Sibley, & Ratcliff, 2012).

Increasing interpretability

Machine learning algorithms are sometimes pejoratively 
described as “black box” approaches that can produce 
good predictions but are virtually impossible to under-
stand. Although it is true that the representations learned 
by many state-of-the-art machine learning approaches—
most notably “deep” artificial neural networks (LeCun 
et al., 2015)—can be impenetrable to human compre-
hension (but see Zeiler & Fergus, 2014), this is a property 
of specific approaches or implementations and not a fea-
ture of predictive models in general. To the contrary, 
researchers who value interpretability over predictive 
accuracy can directly benefit from machine learning 
approaches in at least five ways.

First, as we discussed above, many machine learning 
algorithms provide explicit control over the complexity of 
the fitted model—for example, by varying the penalty 
parameter in lasso regression (cf. Fig. 5)—thus allowing 
researchers to deliberately seek out simpler solutions than 
traditional techniques like OLS would produce (at the 
potential cost of reduced predictive power). Second, some 
classes of learning algorithms are intrinsically interpreta-
ble. For example, a class of algorithms called decision 
trees generate simple conditional rules (e.g., “if gender is 
Female and age is greater than 42, then predict a value of 
1”) that are much easier to understand intuitively than the 
continuous-valued prediction equations generated by 
regression approaches (Apté & Weiss, 1997).

Third, a prediction-focused approach often makes it 
easier to quantify and appreciate the uncertainty sur-
rounding any given interpretation of one’s data. Statisti-
cians regularly caution scientists that regression 
coefficients cannot be assigned straightforward interpre-
tations. For example, we and others have demonstrated 
that under typical measurement conditions, statistical sig-
nificance patterns observed in fitted regression models 
are often very unstable and can produce highly mislead-
ing conclusions (Shear & Zumbo, 2013; Westfall & 
Yarkoni, 2016). Although a focus on prediction cannot 
solve such problems, it will often lead to better calibrated 
(and generally more careful) interpretation of results, as 
researchers will observe that very different types of mod-
els (e.g., lasso regression vs. support vector regression vs. 
random forests) can routinely produce comparably good 
predictions even when model interpretations are very 
different—highlighting the uncertainty in the model 
selection and suggesting that the solutions produced by 
any particular model should be viewed with a healthy 
degree of skepticism.

Fourth, although it is true that the contributions of 
individual predictors can be hard to interpret in complex 
predictive models, a relatively common and often very 
informative technique is to compare a model’s predictive 
performance when different sets of predictive features are 
included. This practice is closely related to that of hierar-
chical regression on sets of variables (Cohen, Cohen, 
West, & Aiken, 2013), which may be more familiar to 
psychologists. For example, suppose one seeks to under-
stand which factors predict binge drinking in adoles-
cents, as in a study discussed earlier (Whelan et al., 2014). 
There are literally thousands of potentially informative—
but densely intercorrelated—demographic, dispositional, 
behavioral, genetic, and neurobiological variables one 
could investigate. However, by comparing a “full” model 
that contains the full set of predictive features with partial 
models that iteratively omit all variables related to, say, 
brain structure, personality, or personal history, one can 
potentially gain valuable insights into the relative contri-
butions of different factors (e.g., Whelan et al., 2014, 
showed that personal history alone is considerably more 
useful for predicting binge drinking than biological vari-
ables, though the latter make a small incremental contri-
bution). Such an approach is also arguably a more 
accurate reflection of the true causal graphs in most areas 
of psychology, which are typically dense and populated 
by many small influences (the so-called “crud factor” in 
psychology; Meehl, 1990).

Lastly, a prediction-focused perspective can help gain 
a deeper understanding of the general structure of one’s 
data. For example, suppose one is interested in the rela-
tionship between personality and language use (Fast & 
Funder, 2008; Pennebaker & King, 1999; Yarkoni, 2010). 
The traditional way to approach this question would be 
to ask which language variables are associated with spe-
cific traits (e.g., Do Extraverts use socialization-related 
words more often?). However, a complementary question 
that should perhaps be asked first is, What kind of param-
eter space are we operating in? That is, is the language/
personality space sparse, so that a relatively small num-
ber of language variables account for the bulk of the 
explainable effects of personality on language? Or is it 
dense, with hundreds, or even thousands, of distinct but 
very small contributions? And can the space be ade-
quately modeled by considering just the (additive) main 
effects of the predictors, or must one consider potentially 
very complex higher order interactions in order to gener-
ate adequate predictions?

Such questions may have important implications for 
both theoretical understanding and study design but are 
not easily addressed using classical statistical approaches. 
By contrast, the relative performance of different kinds of 
machine learning algorithms can potentially provide 
important insights into the nature of the data. For instance, 
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if lasso regression outperforms ridge regression (a tech-
nique similar to lasso regression but that does not place 
the same emphasis on sparseness), then one might con-
jecture that the underlying causal graph is relatively 
sparse. If generalized additive models, support vector 
machines, or random forests outperform standard regres-
sion models, then there may be relatively large low-order 
(e.g., two-way) interactions or other nonlinearities that 
the machine learning methods implicitly capture but that 
regression does not (Breiman, 2001a; Friedman, 2001;  
S. Wood, 2006). And if very complex deep learning archi-
tectures perform much better than virtually all other 
models—as is increasingly the case in many psychology-
related domains such as computer vision and natural lan-
guage processing (LeCun et al., 2015)—one may want to 
consider the possibility that simpler, more interpretable 
models are simply not adequate for explaining the phe-
nomenon of interest.

Asking predictive questions

Perhaps the biggest benefits of a prediction oriented 
within psychology are likely to be realized when psy-
chologists start asking research questions that are natu-
rally amenable to predictive analysis. Doing so requires 
setting aside, at least some of the time, deeply ingrained 
preoccupations with identifying the underlying causal 
mechanisms that are mostly likely to have given rise to 
some data—in other words, choosing complex predic-
tion-focused models over simpler, theoretically elegant 
models. Although this may initially sound like a radical 
prescription, we argue that, often, only a slight shift in 
perspective is required. In many cases, a traditional 
research question is already arguably more naturally 
addressed using a predictive approach. In other cases, a 
research question can be relatively easily reformulated 
into a form amenable to predictive analysis. We consider 
two published examples of such predictive research 
questions.

Inferring personality from online media.  A grow-
ing literature in personality has focused on the question 
of whether it is possible to infer a person’s personality 
from his or her social media footprint—for example, his 
or her Facebook profile (Back et al., 2010; Gosling, 
Augustine, Vazire, Holtzman, & Gaddis, 2011), personal 
blog or website (Vazire & Gosling, 2004; Yarkoni, 2010), 
musical preferences (Rawlings & Ciancarelli, 1997; Rentfrow 
& Gosling, 2003), and so on. This question has tradition-
ally been addressed by testing for statistically significant 
associations between personality dimensions and other 
variables. For example, Back et al. (2010) found that 
observer ratings of Facebook profiles were correlated with 
the target individuals’ actual self-reported personalities but 

not with the targets’ ideal self-ratings; the authors con-
cluded that Facebook profiles reflect people’s real selves 
and not self-idealizations.

Although such an approach is informative, it is not 
necessarily the most sensitive way to address what 
appears to be an inherently predictive question. If one 
wants to know if personality can be discerned from pub-
licly available digital records, or if some traits are easier 
to predict than others, one should ideally build a predic-
tive model that has as its primary goal the successful 
prediction of the outcome in question. The extent to 
which one is able to predict that outcome when leverag-
ing all available information can often provide valuable 
insights. For example, in a massive study involving over 
58,000 Facebook users who completed a variety of psy-
chometric questionnaires, Kosinski, Stillwell, and Graepel 
(2013) sought to predict stable individual differences 
from the “Likes” displayed on participants’ profile pages 
(an average of 170 Likes per person). Using cross-validated 
linear and logistic regression models, the authors were 
able to predict the Big Five personality traits with varying 
accuracy (cross-validated correlation coefficients ranged 
from 0.29 for Conscientiousness to 0.43 for Openness to 
Experience). In addition to unambiguously demonstrating 
that personality can be reliably inferred from online foot-
prints, a major advantage of the Kosinski et al. study is its 
ability to provide good comparative estimates of how well 
different traits can be predicted using multivariate predic-
tive models—information that cannot be easily extracted 
from the simple bivariate associations and p values typi-
cally reported in psychology.

Inferring implicit recognition of subjectively unfa-
miliar stimuli.  The outcomes of criminal investiga-
tions and judicial proceedings often hinge on whether a 
suspect or witness can remember particular people or 
objects, such as those from a crime scene. Yet eyewit-
nesses frequently misremember events (Loftus & Palmer, 
1996), and suspects may be motivated to respond falsely. 
A question of considerable theoretical and practical sig-
nificance is whether the human mind/brain encodes a 
trace of the true events one has witnessed, even when 
the person is unable or unwilling to correctly report this 
recognition. Extracting such knowledge using behavioral 
methods is a daunting proposition, but a tantalizing pos-
sibility is that brain imaging technology such as fMRI 
might be able to help identify otherwise inaccessible rep-
resentations of true events.

To test this possibility, Rissman, Greely, and Wagner 
(2010) had 20 participants study a set of faces and then, 
after a 1-hour delay, complete a recognition task during 
fMRI scanning. The authors used a regularized logistic 
regression model in which each participant’s distributed 
fMRI activation patterns on each trial were used to 
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predict both the subjective recognition ratings given by 
participants and the objective (old vs. new) status of each 
presented face, with the predictive accuracy of the model 
assessed using LOOCV. They found that although the 
brain data could be used to predict participants’ subjec-
tive recognition ratings with very high (up to 90%) accu-
racy, it could not predict the objective old versus new 
status of faces consistently above chance levels. These 
results are important not only for their theoretical interest 
but also because they call into question the legal admis-
sibility of using brain data to demonstrate that a suspect 
does or does not recognize some person or object. 
Although the Rissman et al. study certainly does not rep-
resent the final word on the matter (e.g., the sample size 
was relatively small, so the predictive model may have 
been underpowered), it provides an elegant proof-of-
concept of the utility of a predictive approach in address-
ing questions of basic interest to many cognitive 
neuroscientists and cognitive psychologists. We antici-
pate that similar applications will become increasingly 
widespread in the coming years.

Conclusion

In an influential statistics paper, Breiman (2001b) argued 
that there are two cultures in statistical modeling. The 
vast majority of statisticians belong to the “data modeling 
culture,” in which data are assumed to arise from a par-
ticular data-generating process, and the primary goal is to 
estimate the true parameters of this process. By contrast, 
a minority of statisticians (and most machine learning 
researchers) belong to the “algorithmic modeling cul-
ture,” in which the data are assumed to be the result of 
some unknown and possibly unknowable process and 
the primary goal is to find an algorithm that results in the 
same outputs as this process given the same inputs. 
These two cultures align quite closely with what we have 
called the explanation-focused and prediction-focused 
approaches to science, respectively. Our argument has 
been that psychologists stand to gain a lot by relaxing 
their emphasis on identifying the causal mechanisms 
governing behavior and focusing to a greater extent on 
predictive accuracy.

We hasten to emphasize that we are arguing for a rela-
tive redistribution of psychologists’ energies and not for 
an outright abandonment of efforts to mechanistically 
explain human behavior. In our discussion of explana-
tion and prediction, we have emphasized the differences 
between the two approaches in order to make it clear 
what shifting toward a more predictive psychology would 
entail and what benefits such a shift would provide. We 
readily acknowledge, however, that prediction-focused 
approaches are not appropriate for all research questions 
in psychology. In particular, well-designed, high-powered, 

randomized, controlled experiments are, and should 
remain, the gold standard for drawing causal conclusions 
about the way the human mind operates. More generally, 
we are not suggesting that psychologists (save perhaps 
those working in applied settings) should view predic-
tion as an end unto itself, to be prioritized ahead of 
explanation. Rather, our contention is that researchers’ 
failure to take prediction seriously is a direct contributor 
to many of the problems observed in explanatory psy-
chology in recent years. Thus, we argue that even in 
cases where causal explanation is (appropriately) the 
primary objective, machine learning concepts and meth-
ods can still provide invaluable benefits when used 
instrumentally—by minimizing p-hacking, increasing 
research efficiency, facilitating evaluation of model per-
formance, and increasing interpretability.

Ultimately, the new machine learning approaches 
working their way into psychology should be seen as 
opportunities, not threats. As with any major advance in 
methodology, psychological scientists should work to 
make sure they are equipped to apply a mix of classical 
and new methods to their research as needed. There is 
no denying that in many cases, a focus on prediction will 
reveal major holes in an otherwise elegant explanatory 
story, and many well-known findings—some with seem-
ingly large effect sizes—will likely fail to survive rigorous 
cross-validated analysis in large samples. But those 
explanatory models that successfully capture important 
aspects of human psychology should be much more 
likely to survive such tests—and will emerge with stron-
ger empirical support as a result. What we will hopefully 
then be left with are models that can demonstrably do 
something foundational to the study of psychology: reli-
ably predict human behavior.
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Notes

1. In fact, it is well known that R2 is a biased estimator even of 
the performance of equation 1. Adjustments to the R2 statistic 
that correct for this bias do exist and are sometimes applied, 
but we note that even these adjusted R2 statistics still estimate 
the performance of equation 1 and not equation 2. This dis-
tinction is illustrated a little more concretely at the end of this 
subsection.
2. Note that this is a heuristic and not a law. There are plenty 
of situations where a poorly chosen model will perform terribly 
no matter how much data it is fed.
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3. Note that we use the term Big Data here to refer to datasets 
that are “long” rather than “wide.” The critical element in reduc-
ing overfitting is the number of observations relative to the 
number of predictors. Datasets that include thousands of vari-
ables but have relatively few cases are, if anything, even more 
susceptible to overfitting.
4. It is important to note that, when evaluating the test perfor-
mance of a fitted model, one must apply the exact fitted model—
for example, the specific regression equation obtained from 
the training dataset—to the test dataset. We have occasionally 
reviewed manuscripts in which the authors report that they “cross-
validated” their analyses when in fact they have simply fitted the 
same model a second time in a new dataset. The latter approach 
is not cross-validation and does little to mitigate overfitting.
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