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The authors describe 2 efficiency (planned missing data) designs for measurement: the 3-form
design and the 2-method measurement design. The 3-form design, a kind of matrix sampling,
allows researchers to leverage limited resources to collect data for 33% more survey questions
than can be answered by any 1 respondent. Power tables for estimating correlation effects
illustrate the benefit of this design. The 2-method measurement design involves a relatively
cheap, less valid measure of a construct and an expensive, more valid measure of the same
construct. The cost effectiveness of this design stems from the fact that few cases have both
measures, and many cases have just the cheap measure. With 3 brief simulations involving
structural equation models, the authors show that compared with the same-cost complete
cases design, a 2-method measurement design yields lower standard errors and a higher
effective sample size for testing important study parameters. With a large cost differential
between cheap and expensive measures and small effect sizes, the benefits of the design can
be enormous. Strategies for using these 2 designs are suggested.
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Cost effectiveness and design efficiency in various forms
have long been considerations in research design. This article
focuses on two approaches to design efficiency relating to
measurement. We bring together well-known concepts of mea-
surement and sampling on the one hand and add new analysis
concepts relating to missing data analysis on the other.

In a practical sense, it is the recent development of
missing data analysis tools such as multiple imputation

(Rubin, 1987; Schafer, 1997) and the increasingly popular
full information maximum likelihood (FIML) procedures in
various structural equation modeling (SEM) packages that
makes these new ideas feasible. Just a few years ago, the
designs described in this article would not have been prac-
tical. However, with the recent advances in analysis with
missing data, all this has changed. With the multiple impu-
tation and FIML procedures now widely available, re-
searchers are able to perform most mainstream analyses
whether there are missing data or not. More important, these
recent analytic procedures allow researchers to obtain un-
biased parameter estimates and reasonable standard errors
over a wide range of data circumstances, including the
planned missing data designs described in this article.

Plan of This Article

In order to set the stage for our discussion of planned
missing data designs, we have to say a little about the
missing data analyses, without which planned missing data
designs would not be feasible. Next, because we view
planned missing data designs as members of the general
class of efficiency-of-measurement designs, we discuss
briefly efficiency designs in other research contexts. Then
we discuss a class of efficiency-of-measurement designs
referred to as matrix sampling. We focus on a special case
of this general class of design that we have referred to as the
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3-form design (Graham, Hofer, & Piccinin, 1994). We also
touch on other designs in the same family of designs. We
compare the 3-form design and the complete cases (1-form)
design, discussing (a) the assumptions underlying the de-
signs, (b) trade-offs, (c) power implications, and (d) prac-
tical considerations for deciding which design to use.

Finally, we describe another class of design for efficiency
of measurement that we refer to as two-method measure-
ment. This design involves one cheap, lower quality mea-
sure of a construct and one expensive, high quality measure
of the same construct. We present simulated data showing
that a planned missing data design involving many cases
with just the cheap measures and few cases with both the
cheap and expensive measures yields the best (lowest) stan-
dard errors for testing hypotheses of substantive interest.
We discuss (a) assumptions underlying this class of designs,
(b) trade-offs, (c) power implications, and (d) practical consid-
erations for deciding which variation of the design to use.

Missing Data Analysis

The value of the planned missing data designs presented
in this article hinges on one’s ability to make use of analysis
procedures that handle missing data. In this section, we talk
very briefly about the current state of analysis with missing
data. For a more thorough recent treatment of this topic,
please see Schafer and Graham (2002). Also, one of the
classic works in this area has recently been updated (Little
& Rubin, 2002). For a less technical recent discussion of
missing data analysis, please see Graham, Cumsille, and
Elek-Fisk (2003).

The main thing to be clear about is that missing data
analysis is very well established. The fears that researchers
had in the beginning, nearly 2 decades ago, have all but
disappeared. These fears have been replaced with a cautious
confidence that is based on ever increasing experience with
analyses involving the recommended procedures. In a very
real sense, what was a rather difficult-to-sell analysis strat-
egy just 10 years ago is becoming mainstream.

Kinds of Missingness

There are two kinds of missingness: missing at random
(MAR) and missing not at random (Schafer & Graham,
2002). A special case of MAR missingness, which is often
considered separately, is missing completely at random
(MCAR). Missingness is essentially MCAR as long as
rZY � 0, where Z is a variable that represents the cause of
missingness and Y is the variable containing the missing-
ness. For the present article, MCAR is the most relevant
kind of missingness. For the two designs we consider in
detail, the missingness is entirely under the researcher’s
control, making the MCAR assumptions entirely reason-
able. For a more detailed discussion of the other forms of
missingness, please refer to Schafer and Graham (2002).

Missing Data Analysis Approaches and Software

The two major approaches to analysis with missing data
are multiple imputation and maximum likelihood, or FIML,
procedures. Either of these approaches represents an excel-
lent way of dealing with the missing data created by the
designs described in this article. Multiple imputation (Ru-
bin, 1987; Schafer, 1997; Schafer & Graham, 2002; see also
Graham et al., 2003; King, Honaker, Joseph, & Scheve,
2001; Raghunathan, Lepkowski, VanHoewyk, & Solen-
berger, 2001) takes a two-step approach to handling the
missing data. The first step deals with the missing data and
produces several imputed data sets. In the second step, the
researcher uses standard complete cases analysis procedures
to analyze each of the imputed data sets. The results are then
combined into a single result that looks much like results
from complete cases analyses. Several implementations of
multiple imputation are currently available.

The maximum likelihood approach is to develop new
procedures that allow the researcher to deal with the missing
data and perform the usual parameter estimation, all in a
single step. The maximum likelihood, or FIML, approach
has been popularized in recent years in several SEM pack-
ages, including, in alphabetical order, Amos (Arbuckle,
1995; Arbuckle & Wothke, 1999), LISREL 8.5� (Jöreskog,
& Sörbom, 1996; also see du Toit & du Toit, 2001), MPlus
(L. K. Muthén & Muthén, 1998), and Mx (Neale, 1991;
Neale, Boker, Xie, & Maes, 1999). LTA (Collins, Hyatt, &
Graham, 2000; Hyatt & Collins, 2000; Lanza, Collins,
Schafer, & Flaherty, 2005), a latent class procedure, is also
an example of a program using the FIML approach.

Efficiency Designs: A Backdrop

The kinds of designs presented in this article are related to
a general class of efficiency designs for research. Random
sampling of respondents is perhaps one of the best known
efficiency designs (e.g., see Thompson, 2002; Thompson &
Collins, 2002). Two other types of design that are often
described in the efficient design literature are optimal de-
signs (e.g., see D. B. Allison, Allison, Faith, Paultre, &
Pi-Sunyer, 1997; Atkinson & Donev, 1992; Cox, 1958;
Gelman, 2000; McClelland, 1997) and fractional factorial
(and related) designs (e.g., see Box, Hunter, & Hunter,
1978; Collins, Murphy, Nair, & Strecher, 2005; West &
Aiken, 1997). An essential characteristic of these designs is
that they tend to be variants of experimental designs. They
often focus on the independent variable and involve effi-
ciencies deriving from aspects of assignment to conditions
in experimental studies. These designs attempt to limit the
scope of the research without placing undue limits on what
actually is studied.
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Efficiency Designs for Measurement: I.
Matrix Sampling

Early Designs

Another class of efficiency design focuses on measure-
ment, per se. In this section, we talk about measurement
designs that fall generally under the heading of matrix
sampling (e.g., Shoemaker, 1973). The simplest version of
this type of measurement design involves administering
different items to different respondents, for example, as
shown in Table 1 (Johnson, 1989, 1992; Lord, 1962;
Munger & Loyd, 1988; Shoemaker, 1973). Researchers
using this type of design were interested in reducing the
amount of time it takes respondents to complete the survey.
Indeed, studies involving this type of design have seen
improved response rates, for example, from mail surveys
(e.g., Adams & Darwin, 1982; Munger & Loyd, 1988).
Researchers making use of simple matrix sampling designs
have been interested mainly in estimating means. However,
this design is less useful for estimating correlations between
items (see Graham et al., 1994; Raghunathan & Grizzle,
1995).

More recent variations of the matrix sampling approach
have extended the simple version such that there are some
data not just for all items but also for most or all pairs of
items. McArdle (1994) suggested the fractional block de-
sign. This design was an improvement over the simple
matrix sampling designs; in addition to allowing estimation
of means for all variables, the researcher is able to estimate
correlations for most (but not all) pairs of variables. A
limitation of this type of design is that it requires use of
specialized SEM analyses (P. D. Allison, 1987; B. Muthén,
Kaplan, & Hollis, 1987).

Johnson (1992) suggested the balanced incomplete blocks
(BIB) spiral design. A desirable feature of this design is that
means may be estimated for all variables, and correlations
may be estimated for all pairs of variables. What makes the
BIB spiral design balanced is that the same number of

individuals respond to each item set and to each pair of item
sets. With the design described by Johnson (1992), each pair
of item sets was presented in exactly one form. One draw-
back to this design is that the balancing works only in the
case of seven item sets and seven forms (however, see van
der Linden, Veldkamp, & Carlson, 2004, for an example of
a much larger BIB design).

The 3-Form Design

Another approach to the matrix sampling concept, which
has been in use since 1982 (Graham et al, 1984; Graham,
Johnson, Hansen, Flay, & Gee, 1990; Hansen & Graham,
1991; Hansen, Johnson, Flay, Graham, & Sobel, 1988), is
the 3-form design (Graham et al., 1994; Graham, Hofer, &
MacKinnon, 1996; Graham, Taylor, & Cumsille, 2001).
This design was also developed as a way of limiting the
time necessary for respondents to complete the survey. Or,
more precisely, the goal was to ask more questions than
could be answered by a single respondent. Also, with this
design, it was important to be able to estimate all correla-
tions as well as means and variances. The logic of its
development went something like the following.

Suppose a researcher determines that subjects are willing
to answer 30 questions. But suppose the researcher would
like to ask a few more questions, say 40 questions. One
solution to this common dilemma is to drop 10 items.
Making the decision to drop 10 items is really a planned
missing data design, the consequences of which are (a) that
the researcher cannot ask any research questions involving
the 10 dropped items and (b) that the analyses of the
remaining 30 items involve the straightforward application
of common complete cases procedures.

An alternative is to produce three different forms, such
that a different set of 30 items is presented in each form.
This limits to 30 the number of items given to each subject,
a study requirement, but still allows for collection of data
for all 40 items, which can be used to answer important
research questions. Such a design is presented in Table 2
and has been described by Graham and colleagues (Graham
et al., 1994, 1996, 2001). With this planned missing data
design, items are divided into four item sets (X, A, B, and
C), and questions are presented to subjects as shown in
Table 2. With this version of the 3-form design, items in the
X set, which are essential to the hypotheses under study, are
asked of everyone. Items in the X set are often asked first,
although that is not a requirement. In addition, the item sets
in the three forms are rotated so that different item sets
appear last in each form. For example, in the Adolescent
Alcohol Prevention Trial (Hansen & Graham, 1991), items
were presented as follows: Form 1, XAB; Form 2, XCA;
Form 3, XBC.

Table 1
Example of Simple Multiple Matrix Design

Form

Blocks of items

A B C D E F G

1 1 0 0 0 0 0 0
2 0 1 0 0 0 0 0
3 0 0 1 0 0 0 0
4 0 0 0 1 0 0 0
5 0 0 0 0 1 0 0
6 0 0 0 0 0 1 0
7 0 0 0 0 0 0 1

Note. 1 � questions asked; 0 � questions not asked. Letters A–G refer to
different sets of items.
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The Split Questionnaire Survey Design

Raghunathan and Grizzle (1995) suggested a similar vari-
ation of matrix sampling, which they called the split ques-
tionnaire survey design (SQSD). The SQSD, as they de-
scribed it, involved 11 different forms, 1 of which contained
all of the survey items (note that in all further discussion of
the SQSD, we omit this latter form). An example of the
SQSD, eliminating that 1 (complete data) form, appears in
Table 3. This version has six item sets, including one set, X
in Table 3, that was included in all 10 of the forms shown.
The remaining five item sets (A, B, C, D, and E in Table 3)
were presented to respondents in pairs, such that each com-
bination of the five item sets, taken two at a time, was
presented in exactly one form of the questionnaire. An
important characteristic in common between the 3-form
design and the SQSD (and other designs in this family) is
that in each of these designs, all possible combinations of L
item sets (excluding the item set X), taken two at a time, are
represented in the various forms of the design. In the case
of the 3-form design, all combinations of three item sets,
taken two at a time, are represented in the three forms
(see Table 2). For the SQSD, all combinations of five
item sets, taken two at a time, are represented in the 10
forms (see Table 3).

The main focus in this article is the 3-form design. We
compare that design with the 1-form (complete cases) de-
sign. As an example to be used throughout this part of the
article, we start with the scenario described above: Consid-
ering all relevant factors (e.g., subject fatigue), we assume
that the researcher has the resources to present each subject
with 30 questions but would like to leverage those resources
in order to collect data on 40 questions, 33% more than what
is presented to each subject. We consider this to be a modest
leveraging of resources. The conclusions we draw here
apply to other situations in which the researcher wants to
collect data on 33% more questions than can be answered
by each subject. In a later section, we touch on other
scenarios in which the researcher wishes to leverage re-
sources to a greater extent, for example, by collecting data
on twice as many questions as can be answered by a single
subject.

Details and Refinements of the 3-Form Design

Is the X set needed with the 3-form design? With the
version of the 3-form design described so far, one set of
items, X, is asked of all subjects. The main reason for
including the X set is that the questions in this set are central
to the research, and there may be power concerns for
hypotheses involving these variables. The idea is to have a
design that allows at least some hypotheses to be tested with
the full sample size. That is, having the X set provides a
kind of hedge against the possibility that a hypothesis crit-
ical to the research is actually tested with lower power than
expected. Although situations may arise for which the X set
may be safely excluded, we argue that including the X set is
almost always a good idea.

How large should the X set be? In our examples, and in
most of our applications to date, all of the item sets (X, A,
B, C) contained roughly the same number of variables.
However, this is not a requirement. The X set could be
rather larger than the other sets (e.g., A, B, and C). Making
the X set larger allows more effects to be tested with the full
sample, but at the cost of testing fewer effects overall.
Making the X set smaller than the others means that more
effects may be tested overall, but at the cost of testing fewer
effects with the full sample.

What should be included in the X set? Variables in-
volved in the most important study hypotheses would nor-
mally be included in the X set. Past studies making use of
the 3-form design have been experimental studies looking at
the effects of a prevention program on later substance use
and abuse. Because substance use was the main dependent
variable and because power for such tests is often rather
limited, we have always included such variables in the X
set. One might also examine the pattern of expected effect
sizes. Variables associated with smaller effect sizes might
be placed in item sets that would be tested with larger sam-
ples.

Table 2
The 3-Form Design, With X Set

Form

Item set

X A B C

1 1 1 1 0
2 1 1 0 1
3 1 0 1 1

Note. 1 � questions asked; 0 � questions not asked.

Table 3
Ten-Form, Six-Set Variation of the Split Questionnaire Survey
Design, With X Set

Form

Item set

X A B C D E

1 1 1 1 0 0 0
2 1 1 0 1 0 0
3 1 1 0 0 1 0
4 1 1 0 0 0 1
5 1 0 1 1 0 0
6 1 0 1 0 1 0
7 1 0 1 0 0 1
8 1 0 0 1 1 0
9 1 0 0 1 0 1
10 1 0 0 0 1 1

Note. 1 � questions asked; 0 � questions not asked.
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Placement of the X set. The most important reason for
having an X set is that virtually everyone should provide
answers to the questions in this set. For this reason, it makes
sense that the X set should be near enough to the front of the
survey that even the slowest or least motivated readers will
get as far as the items in the X set. However, if the
researcher is concerned about possible order effects, there is
no reason why the X set should necessarily be absolutely
first in the survey. It probably should just not be last. There
is also no reason why the items in the X set should be all
together in one part of the survey. Finally, it is possible that
the X set could be located in different parts of the survey for
different forms. Table 4 shows one such example, in which
the X set has different locations in different forms but is
never last in the survey.

Variations of the 3-form design. An interesting varia-
tion of the 3-form design asks all questions of all subjects
but rotates item sets so that different forms have different
item sets last (e.g., Flay et al., 1995; Taylor, Graham,
Palmer, & Tatterson, 1998). With the Flay et al. (1995)
version, the orders for the three forms looked like this:
XABC, XCAB, and XBCA. With the Taylor et al. (1998)
variation, the X set of items was divided up (on conceptual
grounds) to yield the following orders: Form 1, X1ABX2C;
Form 2, X1CAX2B; and Form 3, X1BCX2A. With this
variation, virtually everyone was able to complete questions
as far as the X2 set, but some subjects did not have time to
complete questions in the item set that followed X2.

The goal of the Graham et al. (1994, 1996, 2001) version
of the 3-form design was to select a number of items that
most subjects could complete. With the Flay–Taylor variant
of the 3-form design, many more subjects will fail to com-
plete the questionnaire, mainly as a result of slow reading.
Thus, with this variation, it is good to ask questions early in
the questionnaire about reading speed and any other vari-
able that might explain why some subjects will leave items
blank at the end of the questionnaire (e.g., conscientious-
ness). By collecting data on the cause of missingness (e.g.,
reading speed) and including these variables in the missing
data model, the missingness approximates MAR, and biases
associated with this kind of missingness, however small, are
controlled (Collins, Schafer, & Kam, 2001; Graham &
Hofer, 2000; Graham & Schafer, 1999; Graham et al., 1994,

1996, 2003; Little & Rubin, 2002; Rubin, 1987; Schafer,
1997; Schafer & Graham, 2002).

Two caveats about the 3-form design. The first caveat is
that it may be desirable to have complete data for at least a
subset of cases. With the original variation of the 3-form
design, the design yields data for all possible combinations
of two items. Thus, all covariances are well estimated.
However, with the original version of the design, some
combinations of three or more variables do not have data.
This could lead to limitations with some two- or three-way
interactions; there could also be limitations relating to esti-
mation of certain partial correlations. The Flay–Taylor vari-
ant of the 3-form design is one good way to solve this
problem. However, this variant may be less useful for larger
designs in this family of designs (e.g., the 10-form SQSD),
because of the substantial increase in the number of items in
such designs. For all of the designs, it may be practical
simply to pay some respondents an extra amount to com-
plete the entire survey; however, the logistics of this option
will be awkward at times.

The second caveat is a practical one. When one makes
use of the 3-form design, the question arises as to whether
items within scales should appear all within a single item set
or separated across the item sets. Graham et al. (1996)
showed that the latter choice was clearly better from a
statistical standpoint. Standard errors (for the regression
coefficient of one scale predicting another) were always
lower when scale items were divided up across the item sets
(e.g., one scale item in Item Set A, one in Item Set B, one
in Item Set C) than when they all appeared within a single
item set. The main reason for this is that items within scales
are generally more highly correlated with one another than
they are with items from other scales. This fact can lead to
better handling of the missing data and lower standard
errors, if one divides up the scale items across item sets (see
also Collins et al., 2001).

However, if the number of variables in the whole model
exceeds the number that can reasonably be handled by any
of the available missing data procedures, the strategy that is
better in a statistical sense turns out to be a big headache in
a logistical sense: For every analysis, one must use the best
FIML or multiple imputation procedures. Reasonable com-
promises such as forming scale scores on the basis of
available variables (see Schafer & Graham, 2002) are inad-
visable under these circumstances. Thus, we now recom-
mend that scale items be kept together within item sets
(perhaps interspersed throughout the item set), even if it
means somewhat less efficient estimation. Of course, this
recommendation may change as the missing data analysis
procedures advance to the point of being able to handle
large numbers of variables. This issue may be less of a
problem when the Flay–Taylor variant of the 3-form design
is used, but even with that design, we would now recom-
mend keeping scale items together within a single item set.

Table 4
Alternative Orders for the 3-Form Design

Form Item set order

1 XAB
2 XCA
3 XBC
4 AXB
5 CXA
6 BXC
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Power Considerations in the 3-Form Design

The main idea of the 3-form design (as with other designs
in this family) is to leverage one’s resources: One is able to
collect data for more variables with the 3-form design than
with the 1-form design. But it is not as simple as that. When
one leverages one’s resources in any context, there are
always trade-offs. Understanding these trade-offs is neces-
sary for making an informed decision about which design to
use. Gaining a good understanding of the relevant trade-offs
is a bit complicated. In this section, we attempt to walk the
reader through these complications.

1. We show the number of correlations that may be
tested with each design, along with the sample
sizes and statistical power with which they are
tested.

2. We introduce devices to help interpret basic power
figures. We introduce two visual devices to help
highlight the conditions under which the 3-form
design performs less well (in terms of power) than
the standard complete cases design (the ✗ mark)
and the conditions under which the 3-form design
performs better (the ✓ mark). Also, we use the
concept of the power ratio (power based on the
complete cases design divided by the power based
on the 3-form design) to help quantify differences
in power between the two designs.

3. Finally, we argue that the conditions under which

the 3-form design performs less well (✗ ) are rela-
tively rare. But more important, we show that how
many potential undesirable outcomes there are
with the 3-form design is largely under the re-
searcher’s control.

Sample sizes and the number of correlation effects tested.
That one is able to collect data for more variables with the
3-form design than with the 1-form design is, to an extent,
a benefit in and of itself. Having more variables implies that
more means and standard deviations may be estimated.
With most study sample sizes, estimates for all means and
standard deviations will be stable and useful. However, one
must also take into account the fact that with the 3-form
design, some data are collected from less than the full
sample. Thus some correlations (and related statistics) are
tested with the full sample, some are tested with two thirds
of the full sample, and some are tested with one third of the
full sample.

Information about sample sizes and the number of cor-
relation effects tested are presented in Figure 1. In general,
the number of testable effects is the same as the number of
unique correlations within and between sets. Assuming k
variables within each item set, there are k(k � 1)/2 different
two-variable correlation effects within each item set and k2

two-variable correlation effects across any two sets.
The bottom part of each bar of Figure 1 represents the

number of effects testable with the full sample size (N �
300 in this case). The middle bar (3-form design) represents
the number of effects testable with the intermediate sample

Figure 1. Number of testable hypotheses for the 1-form (complete cases) and 3-form designs. For
the 1-form design, 435 effects are testable with the full sample size; for the 3-form design, 45 effects
are testable with the full sample, an additional 435 effects are testable with two thirds of the full
sample, and 300 effects are testable with one third of the full sample. A total of 780 effects are
testable using the 3-form design, representing a 79.3% increase over the 1-form design.
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size. The top part of the bar (3-form design) represents the
number of effects testable with the smallest sample size.
Under the conditions of our example (30 questions asked of
each subject; 40 questions asked altogether), the 3-form
design allows testing of 780 effects (correlations), whereas
the comparable 1-form design (complete cases design that
asks just 30 questions) allows testing of only 435 effects.
However, as shown in Figure 1, with the 1-form design, all
435 of the effects are tested with the full sample size (N �
300 in the figure). With the 3-form design, 45 effects are
tested with the full sample (e.g., N � 300), 435 effects are
tested with two thirds the full sample (e.g., N � 200), and
300 effects are tested with one third the full sample (e.g.,
N � 100).1

Because some effects (correlations) are tested with less
than the full sample size, these effects will, of course, be
tested with less power. Table 5 presents power information
for the one- and 3-form designs for a study with N � 300
and effect sizes ranging from � � .05 to � � .30. To put
these effect sizes in context, Cohen (1977) referred to � �
.10, � � .30, and � � .50 as small, medium, and large
effects, respectively. The trade-off with the 3-form design is
that more effects can be tested, but many of them are tested
with smaller sample sizes. The effects listed across the top
of Table 5 represent classes or categories of effects, where
XX refers to the relationship between two variables from
the X set, XB refers to the effect of a variable from the X set
on a variable from the B set, and so on.

Effects in Table 5 with an ✗ mark indicate that the effect
is tested with good power (.80 or greater) in the 1-form
design, but with power � .80 in the 3-form design. Note that
one can calculate the ratio of the power for rejecting the
false null hypothesis for the two designs by dividing the
power for the 1-form design by the power for the 3-form
design (the power ratio). These calculations are provided in
Table 5 for the two most relevant columns. Effects in the
last two columns of Table 5 (those in effect categories XC,
CC and AC, BC) are not testable at all with the 1-form
design. Effects in these columns marked with a check (✓ )
are effects that can be tested with good power (.80 or
greater) in the 3-form design. Because these effects are not
testable at all with the 1-form design, they represent an
advantage of the 3-form design.

Effects tested with the full N � 300 are tested with good
power when effect sizes are � � .16. Effects tested with
N � 200 are tested with good power when effect sizes are
� � .20. Effects tested with N � 100 are tested with good
power when effect sizes are � � .28.

✗ and ✓ results for a study with N � 300. For a study
with N � 300, there are four effects with the ✗ mark in the
XA, XB, AA, BB category, those for effect sizes � � .16,
� � .17, � � .18, and � � .19 (see Table 5). For this study
sample size, there are 12 such effects in the AB category,

for effect sizes from � � .16 to � � .27. For the XC, CC
effect category, all effects of � � .20 are tested with good
power with the 3-form design. For the AC, BC effect
category, all effects � � .28 are tested with good power with
the 3-form design. None of the effects in these two catego-
ries are testable using the 1-form design.

✗ and ✓ results for studies with N � 1,000 and N �
3,000. Detailed power calculations, such as those shown
in Table 5, for study sample sizes N � 1,000 and N � 3,000
are available in the online supplemental data for this article.
For a study with N � 1,000, there are two effects with the
✓ mark in the XA, XB, AA, BB category, those for effect
sizes � � .09 and � � .10. For this study sample size, there
are six such effects in the AB category, for effect sizes from
� � .09 to � � .14. For the XC, CC effect category, all
effects of � � .11 are tested with good power with the
3-form design. For the AC, BC effect category, all effects
� � .15 are tested with good power with the 3-form design.
None of the effects in these two categories are testable using
the 1-form design.

For a study with N � 3,000, there is only one effect with
the ✗ mark in the XA, XB, AA, BB category, that for effect
size � � .05. For this study sample size, there are four such
effects in the AB category, for effect sizes from � � .05 to
� � .08. For the XC, CC effect category, all effects of � �
.06 are tested with good power with the 3-form design. For
the AC, BC effect category, all effects � � .09 are tested
with good power with the 3-form design. None of the effects
in these two categories are testable using the 1-form design.

Power Reconsidered: Discounting the Apparent
Power Disadvantage of the 3-Form Design

The ✗ and ✓ effects shown in Table 5 do help determine
which design one should use. However, some researchers
will take a conservative stance here. If there are too many ✗

effects with the 3-form design, some may prefer the 1-form
design despite the number of ✓ effects. That is, some
researchers will pay too much attention to ✗ effects shown
in Table 5. Thus, although the information provided in
Table 5 is useful, we argue that it is not the whole story. To
counter the possible conservative bias, we present three
arguments as to why the potentially bad outcomes with the
3-form design (i.e., lower power indicated by the ✗ ) are not
so bad after all.

First notice that the badness of these ✗ effects (i.e., lost
power) is rather variable. We employ the concept of the
power ratio to help quantify the difference in power be-

1 The number of variables per item set will, of course, vary from
study to study. However, the ratios of testable effects shown in
Figure 1 remain approximately the same as what is shown, as long
as there are equal numbers of items in the four item sets.
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tween the two designs. With this ratio, it is easy to show that
(a) for XX effects, there is no power differential between the
designs; (b) for XA, XB, AA, BB effects, the power differ-
ential is small—the 1-form design averages only 23% more
power than the 3-form design for effects denoted ✗ in Table
5 (range � 18%–29%)—and (c) for AB effects, the power
differential is more substantial—the 1-form design averages
69% more power than the 3-form design for effects desig-
nated ✗ in Table 5 (range � 28%–122%). On the basis of
these numbers, we argue that the true disadvantage of the
3-form design is found for just one kind of effect: AB
correlations (one item from the A set and one from the B
set).

Second, note that these AB effects represent a relatively
small portion of the total number of effects. For starters, AB
effects represent just 23% of the total number of effects
(435) in the 1-form design. But also consider the fact that
the various effect sizes in empirical data are not uniformly
distributed. For example, in one wave of one cohort of the
Adolescent Alcohol Prevention Trial study (Hansen & Gra-
ham, 1991), we found that the 1,540 correlations based on
56 scales had a mean of .194 (SD � .139; Mdn � .17) and
were distributed with slightly positive skew (1.01) and
kurtosis (0.89). On the basis of these data, 31% of the AB
effects in the Adolescent Alcohol Prevention Trial study
had effect sizes in the r � .16–.27 range (those with ✗

marks in Table 5).
Multiplying these two percentages together (23% of the

total correlations are in the AB class of effects; 31.3% of
these are expected to be in the problem effect size range),
we see that only 7.2% (31.3% � 23%) of the total number
of effects are expected to be a problem. With larger study
sample sizes, the problem is even smaller. For a study with
N � 1,000, only 4.3% of the total number of effects are
expected to be a problem. For a study with N � 3,000, only
2.9% of the total number of effects are expected to be a
problem (the percentage of problem effects is smaller with
larger Ns because the range of AB effects with ✗ marks is
smaller in such studies).

Third, let us look more closely at the AB category of
effects. Most important, the researcher controls to a large
extent which effects fall in this category. Let us suppose that
the researcher identifies 50 correlations as being most im-
portant to the study goals. If only 7.2% of the study corre-
lations are expected to represent a power disadvantage, this
means that by chance alone, only 50% � 7.2% � 3.6% of
these most important effects are expected to have a power
disadvantage with the 3-form design. However, placement
of items (and thus correlations) into the X, A, B, and C item
sets is not a random process. In fact, if there are 50 corre-
lations defined in advance as most important, the researcher
can virtually guarantee that all 50 will be tested with ade-
quate power.

Researcher Control Over Trade-Offs

There certainly are trade-offs with the 3-form design, as
described above. Fortunately, these trade-offs are largely
under the researcher’s control. If a particular regression
hypothesis is central to the study, then it makes sense to
place the variables relating to the hypothesis into item sets
that will be tested with at least the intermediate sample size.
Even smallish effect size hypotheses are generally tested
with good power under these circumstances. If the hypoth-
esis in question is expected to have a very small effect size,
it may even be advisable to place all the relevant variables
in the X set, where the full sample will be available for the
hypothesis test.

We suggest, for example, that variables associated with
the most important effects (correlations) under study be
placed in the X set. This is especially true when these
most important correlations may have somewhat low
effect sizes. At the very least, researchers should place
both variables for important correlations within one item
set (i.e., both variables within the X, A, B, or C item sets)
or one variable in the X set and one in the A, B, or C item
set. With these strategies, the correlation will appear in
the categories XA, XB, AA, BB or XC, CC in Table 5.
Further, we recommend that researchers place all items
for scales together in the same item set (X, A, B, or C),
perhaps interspersed throughout that item set. Finally, we
recommend that to the extent possible, researchers place
into the same item set (X, A, B, or C) sets of scales that
tend to be examined together.

Power Considerations With Statistical Interactions

The situation with interactions is complicated in sev-
eral ways, but what we have said above relating to
regular two-variable correlations also applies in large
part to the correlations between the product of two vari-
ables and a third variable. In general, the number of such
correlations possible is [k (k � 1)/2](k � 2). If we assume
k � 10 variables (e.g., scales) in each item set, then there
are 30 items total in the X, A, and B item sets, and 12,180
possible two-way interaction effects involving these
three item sets. All of these interactions are testable with
the complete cases design and with the 3-form design.
With the 3-form design, more than half of these effects
are tested with at least two thirds of the full sample size.
As we have argued above, when correlations are tested
with at least two thirds of the full sample size, the
difference in power between the one- and 3-form designs
is not large. An additional 14,460 possible two-way in-
teraction effects involving variables from the C item set
are testable with the 3-form design, but not with the
complete cases design.
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Efficiency Designs for Measurement: II.
Two-Method Measurement

Our two-method measurement design involves two kinds
of measures: relatively cheap, noisy (e.g., less valid) mea-
sures of a construct and expensive, more valid measures of
the same construct. It is key that the expensive and cheap
measures can be thought of, and modeled, as two or more
measures of a single construct. It is generally accepted that
it is desirable to have multiple measures of a construct (e.g.,
Bollen, 1989), for example, because one is better able to
model the error structure of such measures (e.g., Kaplan,
1988). We suggest that these multiple measures can be
selected to have other desirable properties as well.

A major benefit of two-method measurement is that one
can often use a combination of the cheap and expensive
measures to get more power than with the expensive mea-
sures alone and more construct validity than with the cheap
measures alone. What makes this possible is that the valid
(expensive) measures may be used to help model the re-
sponse bias associated with the cheap measures. It is im-
portant to note that this benefit can be achieved even when
a relatively small proportion of the cases have data for the
expensive measure. The benefit of the two-method measure-
ment design can also be framed in terms of its favorable
cost-to-benefit ratio, especially as it relates to statistical
power to test hypotheses involving the constructs of inter-
est.

Definition of Response Bias

The model we use can be thought of as a response bias
correction model. But what do we mean by response bias?
We conceive of response bias as being the opposite of
construct validity. A valid measure measures what it was
intended to measure (e.g., Cook & Campbell, 1979). To the
degree that a measure actually measures something different
from what we intended, the measure is not valid; that is, it
is biased.

This kind of bias can be thought of as the reason why two
measures are more highly correlated than can be explained
by the fact that the measures are both indicators of the same
common factor. This view of response bias is similar to
what Hoyt (2000) described as halo errors. It is also similar
to what Berman and Kenny (1976; see also Graham &
Collins, 1991) referred to as correlational bias.

The Bias Correction Model

Before introducing the missing data part of our approach,
it is important to be clear about the statistical model that will
allow the planned missing data approach to work. Given our
definition of bias, we can conceive of a statistical model
designed to correct for this bias in substantive regression
analyses. The model we use, which is shown in Figure 2,
has some features in common with the models described by
Kenny and others in the multitrait–multimethod context
(Eid, 2000; Graham & Collins, 1991; Kenny, 1976; Kenny

Figure 2. Three-factor structural equation model examining the effect of smoking on general
health. Smoking represents the four-item common factor comprising two cheap measures (self-
report) and two expensive measures (carbon monoxide [CO] and cotinine). The two self-report
measures are also specified to load on the Self-Report Bias factor. Health represents the four-item
latent outcome variable (with four generic indicators of health). The latent variable Smoking is
specified to predict the outcome variable Health. Population parameter values are shown for Cell A
of Simulation 1. In order to reduce complexity, we excluded residual error variances from the figure.

332 GRAHAM, TAYLOR, OLCHOWSKI, AND CUMSILLE



& Kashy, 1992; Marsh, 1989; Widaman, 1985). Our model
is an SEM model following Palmer, Graham, Taylor, and
Tatterson (2002; see also Graham & Collins, 1991;
Hawkins et al., 1997). The idea of our model is to allow for
two sources of correlation between the two cheap measures.
One source is the common factor, or latent variable, for
which the two (cheap) measures are manifest indicators; the
other source is the response bias. This model could actually
include a latent variable representing response bias (e.g.,
Graham & Collins, 1991; Palmer et al., 2002), as depicted in
Figure 2, or equivalently, the model could simply involve
estimating the residual covariance between the two cheap
measures (e.g., Kenny, 1976; Kenny & Kashy, 1992;
Marsh, 1989).

Applications of Two-Method Measurement:
Cigarette Smoking Research

Examples of uses of the two-method measurement design
come from several research domains. In the present article,
we focus on cigarette smoking research. In the study of
cigarette smoking, researchers have supposed that respon-
dents in some (e.g., adolescent) populations are reluctant to
tell the truth about their cigarette smoking. Thus self-report
measures of smoking have been suspect, as are important
correlations with cigarette smoking based on self-reports. In
response to this problem, researchers have often collected
data on biochemical validators, such as carbon monoxide
(CO), saliva thiocyanate, or saliva cotinine (Biglan, Galli-
son, Ary, & Thompson, 1985; Heatherton, Kozlowski,
Frecker, Rickert, & Robinson, 1989; Kozlowski & Herling,
1988; Pechacek, Murray, Luepker, Mittelmark, & Johnson,
1984; Taylor et al., 1998). The model shown in Figure 2 is
designed to correct these problems and produce more real-
istic correlations (and regression coefficients) involving cig-
arette smoking. For the model shown in Figure 2, all of the
smoking relevant variables are specified to load on the latent
variable Smoking. In addition, the two self-report variables
are specified to load on the latent variable Self-Report Bias.
The latent variable Smoking is specified to predict the latent
variable Health. In this example, CO and cotinine are the
expensive, but valid, measures of cigarette smoking, and
self-reports of cigarette use are the cheap measures.

Some Other Applications

Numerous other applications of the two-method measure-
ment design are possible. For example, research related to
nutrition and exercise often involves measurement of adi-
posity. In this context, the cheap (but flawed) measure
commonly used is body mass index (e.g., see Davis &
Gergen, 1994; Goodman, Hinden, & Khandelwal, 2000).
More valid, but much more expensive, measures of adipos-
ity include densitometry, or hydrostatic weighing (e.g., Go-
ing, 1996), and dual energy X-ray absorptiometry (e.g.,

Avesani et al., 2004; Fisher, Johnson, Lindquist, Birch, &
Goran, 2000; Lohman, 1996; Roubenoff, Kehayias, Daw-
son-Hughes, & Heymsfield, 1993).

In the area of nutrition, researchers frequently collect data
from many subjects on a relatively inexpensive (but flawed)
short self-administered nutrition survey. A more intensive
(and much more expensive) face-to-face nutrition interview
is then administered to a smaller number of subjects via a
trained interviewer (Williet, 1990). The extensive nutrition
survey incorporates visual cues and prompting by the inter-
viewer, yielding much more reliable and valid nutrition
data. This idea also applies to survey research more gener-
ally. It may be reasonable to combine a self-administered
survey, which could be given inexpensively to a large
number of subjects, with a more in-depth, face-to-face in-
terview, which could be administered to a subset of the
subjects.

Artificial Data Illustrations for
Two-Method Measurement

We now illustrate the benefits of our two-method mea-
surement model with three brief simulations (note that our
simulations involve artificial data but are not the kind of
simulations often called Monte Carlo studies). In Simula-
tion 1, we varied the valid reliability and validity of the
cheap measures and the valid reliability of the expensive
measures (we define valid reliability as the valid component
of reliable variance; we distinguish this from reliable vari-
ance that may be attributable to response bias or another
construct). In Simulation 2, we varied the cost differential
between the cheap and expensive measures. In Simulation
3, we varied the effect size of the major latent variable
regression coefficient of interest.

Simulation 1

Our artificial data illustrations involve a latent variable
model with two substantive latent variables, Smoking and
Health (along with the Self-Report Bias latent variable).
This model is depicted in Figure 2, along with key popula-
tion parameter values for one cell (Cell A) of the artificial
data example. The simulated Health latent variable was
measured with four manifest variables. The simulated
Smoking latent variable (also referred to below as the valid
common factor) was also measured with four manifest vari-
ables, two items from a hypothetical self-administered
smoking survey (administered to all subjects) and two hy-
pothetical biochemical items (e.g., CO from a breath sample
and cotinine from a saliva sample) administered to a random
sample of the same subjects.

For Simulation 1, the population correlation between the
smoking and health latent variables was � � �.40 (��
�.28). For illustration, we assumed that $15,050 was avail-
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able for measurement of the smoking measures. On the
basis of the actual data collection costs of one study (Taylor
et al., 1998), we estimated collection of self-report measures
to be $7.30 per subject and collection and analysis of the
breath and saliva samples to be an additional $16.78 per
subject.

With these assumed costs, it is possible to collect com-
plete self-report and biochemical data for N � 625 people.
For exactly the same costs ($15,050), it is also possible to
collect more self-report data and less biochemical data. For
illustrative purposes, we increased the sample size for self-
report measures in N � 100 increments and reduced the
number of biochemical measures to keep the overall cost
constant (for all five cells in Simulation 1, with an increase
of 100 self-reports, 43.5 fewer biochemical measures must
be collected in order to keep the overall cost constant). For
each sample size combination, we simulated data under five
conditions. In each case, we retained the idea that the
expensive (e.g., biochemical) measures were better than the
cheaper self-reports, in that they were more valid and/or
more reliable. More precisely, we examined several cases in
which we varied (a) the valid reliability (i.e., the factor
loadings on the hypothetical smoking factor) of the two
kinds of measure and (b) whether there was systematic
self-report bias (i.e., reliable variance on the self-report bias
construct).

Simulation Cell A (self-reports biased; expensive mea-
sures had higher valid reliability). For this cell, self-
reports contained some response bias, which was repre-
sented in the population by the nonzero (.50) factor loadings
on the Self-Report Bias factor. This factor was specified to
be uncorrelated with other factors in the model. This level of
bias has the effect of doubling the observed correlation
between self-report variables in this cell from r � .25 to r �
.50. The expensive measures also had more valid reliability:
The factor loadings on the Smoking factor were .50 for the
self-report items and .70 for the biochemical measures. Key
population values for this cell of the simulation appear in
Figure 2. The annotated LISREL code that generated the
population covariance matrix for this (and all) cells can be
found in the online supplemental data for this article. In Cell
A, the valid common factor and bias factor each accounted
for 25% of the variance in the self-reports.

Simulation Cell B (self-reports biased; expensive and
cheap measures had equally high valid reliability). For
this cell, self-report bias was created as described for Cell
A. However, in this case, factor loadings on the Smoking
factor were reasonably high (.70) for both types of mea-
sures. In this cell, the valid common factor accounted for
49%, and the response bias factor accounted for 25% of the
variance in the self-reports.

Simulation Cell C (self-reports biased; expensive mea-
sures had lower valid reliability). Self-report bias was
created as described for Cell A, and the expensive measures

had less valid reliability: The factor loadings on the Smok-
ing factor were .70 for the self-report items and .50 for the
biochemical (expensive) measures. For this cell, the valid
common factor accounted for 49%, and the response bias
factor accounted for 25% of the variance in the self-reports.

Simulation Cell D (self-reports biased; expensive and
cheap measures had equally low valid reliability). Self-
report bias was created as described for Cell A. In this case,
factor loadings on the Smoking factor were a bit low (.50)
for both types of measures. For this cell, the valid common
factor and bias factor each accounted for 25% of the vari-
ance in the self-reports.

Simulation Cell E (self-reports not biased; expensive
measures had more valid reliability). For this cell, there
was no Self-Report Bias factor; the self-reports loaded only
on the Smoking factor. In this case, factor loadings on the
Smoking factor were .70 for biochemical items and .50 for
the self-reports.

Main dependent variable. The variable of primary in-
terest in Simulation 1 was the standard error for the regres-
sion coefficient between the two factors (note that there is
no parameter estimation bias with the missing data proce-
dures used). This regression coefficient would carry the
main substantive interest for the test of the hypothesis of
whether smoking had an impact on later health. The stan-
dard error for this regression coefficient is inversely related
to the power for testing the regression coefficient.

The standard errors reported in Figure 3 were simulated
in the sense that the population covariance matrix for the
tested model was analyzed, as if it contained real data, under
the missing data circumstances to be described. The com-
plete cases model in each cell (A, B, C, D, E) was a
straightforward one-group model analyzed using LISREL
8.5 (Jöreskog & Sörbom, 1996; the annotated LISREL code
for this model may be found in the online supplemental data
for this article). For each cell, this model was tested using
the population covariance matrix as input, with N set to 625
(i.e., “no � 625” in the DA [Data] statement). For Cells A,
B, C, and D, the residual covariance was estimated between
the two simulated self-report items to model the bias con-
tained in these cells. The models for Cell E were the same
as those in the other cells except that no residual covari-
ances were estimated (and no bias was present in the pop-
ulation; note, however, that exactly the same results were
obtained for Cell E whether this residual covariance was
estimated or not).

We tested each of the remaining models using the mul-
tiple group capabilities of LISREL 8.5, using the missing
data strategy described by P. D. Allison (1987) and B.
Muthén et al. (1987; the LISREL code for this model may
also be found in the online supplemental data for this
article). This strategy has been used in the past for exam-
ining the effects of missing data on parameter estimation
(Graham et al., 2001).
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Normally one would analyze missing data, including data
from the two-method measurement design, using multiple
imputation (Rubin, 1987; Schafer, 1997) or one of the SEM
packages with a FIML feature for handling missing data.
However, with simulation work, the advantage of using the
multiple-group SEM procedure over using the more stan-
dard SEM–FIML approach, is that the population values
can be analyzed directly. With FIML, one must input raw
data (including missing and nonmissing values). Such data
sets, even when simulated, cannot conform to the popula-
tion parameters except on average. Making use of the mul-
tiple-group strategy, one is able to simulate the standard
errors using just one (two-group) analysis. Simulating the
standard errors using FIML procedures would require tens
or even hundreds of thousands of replications for the entire
simulation.

For the two-group models, the overall sample size ranged
from 700 to 1,800 in increments of 100. For example, when
the overall N � 700, 592 cases had complete data, and
another 108 cases had self-report data but no data for either

of the expensive biochemical measures. The 592 cases with
complete data were modeled as Group 1 and were handled
in the usual way for any SEM model. The input matrix for
this group was the population covariance matrix.

The 108 cases with partial data were set up as follows.
The input covariance matrix was the same as the population
matrix, except that all covariances involving the two miss-
ing variables were set to 0. The variances for the two
missing variables were set to 1 (see P. D. Allison, 1987;
Graham et al., 1994). All factor level parameters in the
model (factor variances, covariances, regressions) were es-
timated and constrained to be equal across the two groups.
All item-level parameter estimates (factor loadings, residu-
als, residual covariances), where data were available, were
also estimated and constrained to be equal across the two
groups. Factor loadings involving the two missing variables
were estimated normally in Group 1 and fixed at 0 in Group
2. Item residual variances involving the two missing vari-
ables were estimated normally in Group 1 and fixed at 1 in
Group 2. This procedure yields maximum likelihood param-

Figure 3. Simulation 1 standard errors for the regression coefficient of the Smoking factor
predicting the Health factor. Ns displayed along the x-axis refer to number of study subjects
presented with the cheaper, less valid measures; corresponding Ns for subjects also presented with
the more expensive, more valid measures (e.g., biochemical measures) are shown in parentheses. All
standard errors were based on analyses of the population covariance matrix under the various
missing data conditions of Simulation 1. Effective N Increase Factors were calculated by dividing
the effective N by the complete cases N. Curves A–E correspond to Simulation Cells A–E. The valid
reliability and validity of the cheap measures and the valid reliability of the expensive measures
were varied as follows. Cell A � factor loadings of .50, .70 (cheap, expensive) � self-report bias;
Cell B � factor loadings of .70, .70 (cheap, expensive) � self-report bias; Cell C � factor loadings
of .70, .50 (cheap, expensive) � self-report bias; Cell D � factor loadings of .50, .50 (cheap,
expensive) � self-report bias; and Cell E � factor loadings of .50, .70 (cheap, expensive) � no bias.
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eter estimates in the missing data case (P. D. Allison, 1987;
Graham et al., 1994; B. Muthén et al., 1987).

Results for Simulation 1

One of the most striking results shown in Figure 3 is that
for all five conditions of the simulation, the best measure-
ment design (i.e., the design yielding the lowest standard
error) was a missing data design. In each case, the standard
errors for at least eight of the planned missing data designs
were lower than the standard error for the corresponding
complete cases design costing exactly the same.

At first blush these results may seem counterintuitive. But
consider the following: For the cost scenario presented in
Figure 3, the sample size for the self-report measures was
increased in increments of N � 100. In order to maintain the
same overall costs, for every 100 cases of self-reports
added, we must collect 43.5 fewer biochemical measures.
The degree to which the standard error gets smaller because
of the increase of N � 100 self-reports is greater than the
degree to which the standard error gets larger because of the
decrease of N � 43.5 biochemical measures.

A second result that emerges from Figure 3 is that not all
planned missing data designs yielded better (lower) stan-
dard errors. For the first four cells of the artificial data
illustration (Cells A, B, C, and D), as the number of planned
missing values increased, the standard errors went down to
some minimum and then increased again, eventually be-
coming larger than the complete cases standard error. Al-
though it is not shown in Figure 3, the standard error
approaches infinity as the number of expensive measures
approaches zero. Modeling the response bias becomes less
and less efficient as the complete cases sample size gets
small; in the extreme, when there are no expensive mea-
sures, the bias is not estimable because of algebraic under-
identification.

A third result of Simulation 1 is that the curves for Cells
B and C are relatively deeper than the curves for Cells A
and D (see Figure 3). The most important difference be-
tween these two sets of cells was the (valid) reliability of the
self-report measures (.70 in Cells B and C; .50 in the other
cells). One conclusion is that the planned missing data
design is more obviously better than the complete cases
design of the same cost when the (valid) reliability of the
self-report (or inexpensive) measures is relatively high.

Depth of the curves, percentage of decrease in standard
error. The difference in the depth of the curves is captured
nicely in Figure 3. However, more important than the depth,
per se, is the degree to which the key standard error is
reduced from the complete cases design to the best missing
data design. For example, for Cell A, the standard error for
the best missing data design was 8.2% lower than the
corresponding complete cases design. For Cell B, the stan-

dard error for the best missing data design was 20% lower
than the corresponding complete cases design.

Effective N Increase Factor. A more intuitive way of
describing the depth of these curves is to find the complete
cases N that produces the same standard error found in the
best missing data design. For Cell A, complete cases N �
740 yields the same standard error found in the best missing
data design. We refer to this new N as the effective N. That
is, this missing data design behaves, with respect to the key
standard error and statistical power, as if the sample size
were N � 740. Further, we find it useful to calculate the
Effective N Increase Factor, which is simply the effective N
divided by the nominal complete cases N (625 in our ex-
ample). The Effective N Increase Factors for the first four
cells of Simulation 1 appear in Figure 3. This factor was
1.18 for Cell A and 1.57 for Cell B (note that this factor is
not defined for Cell E because there was no clear minimum
standard error for this cell).

A fourth interesting finding from Simulation 1 is that the
curve for Cell E was monotonically decreasing. This oc-
curred because in Cell E, the cheap measure did not contain
bias in the population and bias was not modeled (although
the same result occurred whether the bias was modeled or
not). Increases in the sample size for the self-report mea-
sures yielded the customary decreases in the standard error,
and because there was no bias, there was no corresponding
decrease in the efficiency of bias estimation as the sample
size for the expensive measures decreased.

Finally, comparing Cells A and D in Figure 3 shows that
the effect of lowering the (valid) reliability of the expensive
measures changes the overall level of the standard error
(and statistical power); all of the standard errors for Cell D
were higher than those for Cell A. However, other aspects
of the two sets of standard errors were essentially the same,
implying that changes in (valid) reliability of the expensive
measure (sometimes missing) had minimal impact on the
value of using a missing data design. Comparing Cells B
and C leads us to the same conclusion.

Simulation 2: Less Extreme, More Extreme Cost
Differential

The simulation results depicted in Figure 3 were based on
actual research costs from one study. However, studies will
vary considerably in the cost differential between cheap and
expensive measures. Simulation 2 expands on the results of
the first simulation by examining the effects of less and
more extreme cost differential between these measures.
These results are presented in Figure 4. The results shown in
Figure 4 pertain to Cell A circumstances only (expensive
measure better in the sense of having better valid reliability
and less bias).

For all of the scenarios shown in Figure 4, the cheap
measure was $7.30 per person. The per-person cost for the
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expensive measures varied for the four curves. Each curve
is labeled with the approximate ratio between the expensive
and cheap measures. The bottom curve (A1) shows results
based on $12.04 per-person for the expensive measure (a
1.65:1 cost ratio). The second curve from the bottom (A2) is
the same as Cell A in Figure 3 ($16.78 per person; a 2.3:1
cost ratio). The second curve from the top (A4) shows
results based on somewhat higher expensive measure costs
($30.00 per person; a 4.1:1 cost ratio). The top curve in
Figure 4 (A10) shows results based on even wider, but still
realistic, cost differential ($73.00 per person; a 10:1 cost
ratio).

For Simulation 2, the total cost for measuring the
smoking variables remained approximately $15,050 (this
total varied slightly for different cost ratios). Thus, the
number of complete cases, cases with cheap measures,
and cases with expensive measures all varied depending
on the cost ratio. For Cell A1, N � 778 complete cases
cost $15,047, overall. For each increase of 100 cheap

measures there must be 60.6 fewer expensive measures in
order to keep overall costs the same. Thus, for N � 1,100,
N � 1,400, and N � 1,700 cheap measures, there were,
respectively, N � 583, N � 401, and N � 219 expensive
measures. For Cell A2, N � 625 complete cases cost
$15,050, overall (as described in Simulation 1). For each
increase of 100 cheap measures, there must be 43.5 fewer
expensive measures in order to keep overall costs the
same. Thus, for N � 800, N � 1,100, N � 1,400, and N �
1,700 cheap measures, there were, respectively, N � 549,
N � 418, N � 288, and N � 157 expensive measures. For
Cell A4, N � 403 complete cases cost $15,032, overall.
For each increase of 100 cheap measures there must be
24.33 fewer expensive measures in order to keep overall
costs the same. Thus, for N � 500, N � 800, N � 1,100,
N � 1,400, and N � 1,700 cheap measures, there were,
respectively, N � 380, N � 307, N � 234, N � 161, and
N � 88 expensive measures. Finally, for Cell A10, N �
187 complete cases cost $15,016, overall. For each in-

Figure 4. Simulation 2 standard errors for the regression coefficient of the Smoking factor
predicting the Health factor. Ns displayed along the x-axis refer to number of study subjects
presented with the cheaper, less valid measures. Corresponding Ns for those also receiving the
expensive measures are shown as follows (N for cheap measures/N for expensive measures): Cell
A1 � (1,100/583), (1,400/401), (1,700/219); Cell A2 � (800/549), (1,100/418), (1,400/288),
(1,700/157); Cell A4 � (500/380), (800/307), (1,100/234), (1,400/161), (1,700/88); and Cell A10 �
(500/156), (800/126), (1,100/96), (1,400/66), (1,700/36). All configurations cost approximately
$15,050 in total. All standard errors were based on analyses of the population covariance matrix
under the various missing data conditions of Simulation 2. Effective N Increase Factors were
calculated by dividing the effective N by the complete cases N. All Simulation 2 analyses are based
on Cell A conditions from Simulation 1 (factor loadings � .50, .70 [cheap, expensive] � self-report
bias). The per-person cost differential between cheap and expensive measures was varied as follows.
Cell A1 � expensive ($12.04), cheap ($7.30), 1.6:1 cost ratio; Cell A2 � expensive ($16.78), cheap
($7.30), 2.3:1 cost ratio; Cell A4 � expensive ($30.00), cheap ($7.30), 4.1:1 cost ratio; and Cell
A10 � expensive ($73.00), cheap ($7.30), 10:1 cost ratio.
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crease of 100 cheap measures there must be 10 fewer
expensive measures in order to keep overall costs the
same. Thus, for N � 500, N � 800, N � 1,100, N �
1,400, and N � 1,700 cheap measures, there were, re-
spectively, N � 156, N � 126, N � 96, N � 66, and N �
36 expensive measures.

The results shown in Figure 4 have the same basic
pattern as before. Even with the less extreme cost esti-
mates shown in the bottom curve (A1), the complete
cases design was not the best alternative. The effective N
for curve A1 was 9% higher than the nominal complete
cases N. When the cost differential was more extreme
(Curve A4), the effective N was 43% higher than the
nominal complete cases N. For the even wider cost dif-
ferential shown in Curve A10, the effective N was nearly
double the nominal complete cases N.

Simulation 3: Different Effect Sizes

Simulation 3 examined two cells from Simulation 2:
Cell A2 (Reliability Scenario A with a 2.3:1 cost ratio)

and Cell A10 (Reliability Scenario A with a 10:1 cost
ratio). We examined the effect size used in Simulations 1
and 2 (� � .40 between the two latent variables smoking
and health) and a smaller effect size (� � .10; a small
effect size in terms of Cohen, 1977). The results of
Simulation 3 appear in Figure 5. The curves A2(.40) and
A10(.40) are the same as the A2 and A10 curves from
Figure 4. Curve A2(.10) is the same cost scenario as Curve
A2(.40) (2.3:1 cost ratio), but with the lower effect size.
Curve A10(.10) is the same cost scenario as Curve A10(.40)

(10:1 cost ratio), but with the lower effect size. The
sample sizes for complete cases and for cheap and ex-
pensive measures for Cells A2(.40) and A2(.10) were the
same as those shown in Simulation 2 for Cell A2. The
sample sizes for Cells A10(.40) and A10(.10) were the same
as those shown in Simulation 2 for Cell A10.

The main difference between the two effect sizes is that
the curves for the smaller effect size are rather deeper than
those for the higher effect size. For Cell A2(.10), the effec-
tive N was 35% higher than the nominal complete cases N.

Figure 5. Simulation 3 standard errors for the regression coefficient of the Smoking factor
predicting the Health factor. Sample sizes displayed along the x-axis refer to the number of study
subjects presented with the cheaper, less valid measures. Corresponding Ns for those also receiving
the expensive measures are shown as follows (N for cheap measures/N for expensive measures):
Cells A2(.40) and A2(.10) � (800/549), (1,100/418), (1,400/288), (1,700/157) and Cells A10(.40) and
A10(.10) � (500/156), (800/126), (1,100/96), (1,400/66), (1,700/36). All configurations cost approx-
imately $15,050 in total. All standard errors were based on analyses of the population covariance
matrix under the various missing data conditions of Simulation 3. Effective N Increase Factors were
calculated by dividing the effective N by the complete cases N. Curves A2(.40), A2(.10), A10(.40), and
A10(.10) correspond to Simulation Cells A2(.40), A2(.10), A10(.40), and A10(.10), respectively. The
cheap measure to expensive measure cost ratio and the effect size of the regression coefficient of
interest (Smoking predicting Health) were varied as follows: Cell A2(.40) � 2.3:1 cost ratio, � � .40;
Cell A2(.10) � 2.3:1 cost ratio, � � .10; Cell A10(.40) � 10:1 cost ratio, � � .40; and Cell A10(.10) �
10:1 cost ratio, � � .10.
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For Cell A10(.10), the effective N was 3.45 times higher than
the nominal complete cases N. Furthermore, for Cell A2(.10),
the best design involved collecting cheap measures for N �
1,700 cases but expensive measures for just N � 157 cases.
For Cell A10(.10), the best design involved collecting cheap
measures for N � 1,600 cases but expensive measures for
just N � 46 cases.

Discussion of the Two-Method Measurement Design

In this section, we discuss the two-method measurement
design in light of the knowledge gained from the artificial
data illustrations. We discuss power implications and strat-
egies for making use of these designs in empirical research.
We also discuss assumptions underlying the design, trade-
offs, and limitations of the design.

Implications for Statistical Power

The results in Figures 3–5 show that under a variety of
design circumstances planned missing designs yield smaller
standard errors and larger effective Ns for key parameters
than do the corresponding complete cases designs. But what
implications do these results have for the statistical power
for testing key substantive hypotheses? For Cells A2(.40) and
A10(.40) in Figure 5, the difference in power was very small
between the best and worst designs shown (power � .995 in
all cases). However, for Cells A2(.10) and A10(.10) in Figure
5, where the effect size was small, there was a clear power
differential between the best design and the corresponding
complete cases design. For Cell A2(.10), the complete cases
design had power � .47 for finding a significant regression
coefficient for Smoking predicting Health. With the best
missing data design, power � .61. For Cell A10(.10), the
complete cases design had power � .18; the best missing
data design had power � .55.

Generalizability of Effective N Increase Factor

Of course, these power figures depended on the specific
sample sizes under study. Had the sample sizes shown in
Figure 5 been much smaller, we might have seen differences
in power between complete cases and missing data designs,
even for Cells A2(.40) and A10(.40). This illustrates the fact
that power, per se, does not generalize to studies with
different sample sizes. However, the Effective N Increase
Factor does generalize well across studies with different
sample sizes. For example, any study with the A10(.10)

scenario will have a 3.47 Effective N Increase Factor, re-
gardless of the sample size. The Effective N Increase Factor
may thus be used as an aid in calculating power for
any study.

Using the Two-Method Design in Practice:
Researcher Has Fixed Budget

In this article, we have focused mainly on the situation in
which the researcher has a fixed data collection budget. From
our artificial data examples, it is clear that for every research
scenario, there is a single most efficient design. The problem is
that in practice one typically does not know in advance pre-
cisely which design will be best. Fortunately, one of the most
relevant factors, the cost ratio between cheap and expensive
measures, is generally known in advance.

Another relevant factor, effect size, is also easy to deal
with. Here we capitalize on the fact that researchers com-
monly posit a range of plausible effect sizes for their most
important effects. We argue that one will always be best off
choosing a missing data design that is optimal for the
smallest plausible effect size: If the effect turns out to be
that small, one has the optimal design. If the effect turns out
to be stronger than expected, then the benefit of the larger
effect size more than offsets the degree to which the design
is not optimal for the larger effect size.

It is also possible to deal with the third relevant factor,
factor loadings on the valid common factor and the bias
factor. The best way to figure out what to do in this regard
is to collect some data using the measures in question prior
to start of the study. Many researchers will have collected at
least some pilot data for the two kinds of measures. One can
then test a two-factor model like the left side of Figure 2
(Smoking and Bias factors). If the factor loadings (on the
valid common factor and bias factor) are similar to what we
have shown in this article, then one of our designs will
likely be very close to optimal, and the researcher can use
our figures to make design decisions. If the factor loadings
are markedly different from what we have examined here,
then one could conduct a brief simulation, as we have done
here, with those values. Using the LISREL code we have
provided in the online supplemental data to this article, one
can write out the population covariance matrix correspond-
ing to those factor loadings. Then, using the provided
LISREL code, one could conduct a series of analyses using
as input the implied covariance matrix from the previous
analysis. In this way, one could tailor a simulation to data
one would actually be using.

Assumptions and Trade-Offs

Most important in this regard is the assumption that the
lack of construct validity, or bias, in the cheap measures can
be modeled. It is easy to model this bias if it can be assumed
that the correlation between the bias and the outcome vari-
able (rBY) is negligible. This assumption, which will be met
under many research circumstances, was the assumption
made in the present study. When the assumption that rBY �
0 is not viable, other models are possible that would esti-
mate that correlation (or regression) as well (e.g., see Gra-
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ham & Collins, 1991). Although some such models do tend
to be a bit unstable because of model underidentification, we
have found that many of these bias correction models are
stable in this context (e.g., Palmer et al., 2002). In addition,
the Bayesian approach (e.g., see Taub et al., 2005) holds
much promise in this context.

As with the 3-form design and other designs in that family,
there are trade-offs with the two-method measurement design.
The advantage of using this kind of design has been well
described in the previous sections. General linear model anal-
yses involving the construct of interest may be tested with
more power. The trade-off, however, is that other hypotheses
not involving the general linear model may be tested with less
power. This loss of power would likely occur for analyses for
which the researcher prefers to use the more valid, expensive
measure alone. In addition, the advantages we have described
for two-method measurement are less likely to be realized if
the SEM approach we described here is not an option. On the
other hand, as Bayesian approaches are developed, such as that
described recently by Taub et al. (2005), they may be good
alternatives that can be used in this context when the SEM
approach cannot.

Future Research Directions and Open Questions

We have described two kinds of measurement design
involving planned missing data. Although these designs
may not be suited for every circumstance, they have been
and will continue to be an enormous benefit to researchers
in a wide variety of psychological research settings.

The 3-Form Design and Other Members of This
Family of Planned Missing Data Designs

The 3-form design has already proven to be highly useful.
But it is important to remember the basic condition under-
lying this type of design: The 3-form design (and other
designs in this family) will be useful whenever one has the
time and other resources to ask some number of questions of
one’s respondents but would like to ask more questions. If
this basic condition is met, then one of these designs will be
useful.

In this article, we focused mainly on the 3-form design.
This design is particularly well suited to the situation in
which one wishes to leverage one’s resources to a modest
degree; the 3-form design involves asking approximately
33% more questions than can be answered reasonably by
any one subject. But what if one wants to leverage one’s
resources to an even greater extent? What if it is important
to the researcher to be able to collect data on even more
variables than would be possible with the 3-form design?
One good option would be to choose another member of this
family of designs (e.g., the SQSD; Raghunathan & Grizzle,
1995). We suspect that in order for these larger designs to be

viable, one must have a rather large sample size, for exam-
ple, N � 3,000 or larger. The practical limits with respect to
sample size for the various designs in this family of design
will be addressed in future research.

Small samples. We have provided power information
for a study with N � 300. On the basis of the information
we have provided (e.g., see Table 5), we believe the 3-form
design can be useful with samples as small as this. But what
if one’s study sample size is even smaller? Or what if one’s
sample size is N � 300, but one is uncomfortable using the
3-form design as described? Under these circumstances, it is
very possible to adjust the 3-form design so that the lever-
aging of one’s resources is even more modest than de-
scribed here. And with reduced leveraging comes less risk.

Actual power with the 3-form design. In the present
article, we calculated power (e.g., in Table 5) on the basis of
simple correlation coefficients. For these calculations, we
used the nominal sample size for various parts of the design.
However, the true power for testing effects with the 3-form
design may be different from what we have shown. In fact,
the power values shown in Table 5 relating to the 3-form
design are a lower bound on the power to test these various
effects. It has been shown that the power to test a particular
effect is enhanced in the missing data case to the extent that
other variables are available (auxiliary variables) that are
highly correlated with the variables containing missing data
(e.g., see Collins et al., 2001). Calculating the increase in
power under various conditions is beyond the scope of this
article, but suffice it to say, one’s actual power with the
3-form design will generally be at least a little better than
shown in Table 5, especially if one has longitudinal data.
These issues will be pursued in future research.

Two-Method Measurement

The two-method measurement design shows enormous
promise. Like the 3-form design, two-method measurement
allows researchers to collect high quality data in a cost
effective manner. By no means did our illustrations cover all
possible research scenarios. Given the scenarios that we did
examine, we showed that there was always a benefit of
using a two-method measurement design and that the ben-
efit ranged from a modest 10% increase in effective sample
size to as high as tripling the effective sample size compared
with the corresponding complete cases design.

Future research relating to this design will explore re-
search domains in which the design may be applied. Our
examples mainly involved measurement of cigarette smok-
ing. But we believe that two-method measurement designs
will prove to be useful in numerous other domains, includ-
ing studies relating to nutrition intake, adiposity measure-
ment, physical activity, physical conditioning, and blood
vessel health. In fact, this design should prove to be useful

340 GRAHAM, TAYLOR, OLCHOWSKI, AND CUMSILLE



in virtually any research domain in which highly valid, but
expensive, measures are sought.

Future research will also explore extensions of the two-
method measurement design itself. What other configura-
tions of the design will prove to be useful? To what extent
is it possible to have just one cheap measure, just one
expensive measure, or just one of each? To what extent is it
possible to make use of more standard statistical methods
(i.e., not SEM) to achieve some or all of the benefits we
have described? To what extent will other approaches, such
as Bayesian approaches (e.g., Taub et al., 2005) prove to be
useful?

MAR designs: Two-phase designs. Most of what we
present in this article relates to what might be thought of as
MCAR designs. Cases are randomly assigned to receive
both the cheap and expensive measures or just the cheap
measure. But what about the two-phase designs in which the
cheap and expensive measures are given in sequence (e.g.,
Deming, 1977; Shrout & Newman, 1989; Wittchen,
Kessler, Zhao, & Abelson, 1995)? In theory, there is no
reason why this sort of design would be any different from
those we have described. The fact that the missingness on
the expensive measure is dependent entirely on the first
(cheap) measure makes this a case of MAR missingness.
One assumption in making this sort of design work is that
the two measures can reasonably be thought of as measuring
the same construct. Another assumption is that it must be
reasonable to think of the expensive measure as being a gold
standard (i.e., completely valid) measure of the construct in
question. If these two assumptions are met, the two-phase
measurement design fits neatly into the two-method mea-
surement framework, and all the benefits we have dis-
cussed apply.

Small sample size. One of the biggest strengths of the
two-method measurement design is that the benefit can be
assessed using the Effective N Increase Factor, which shows
the proportion by which the effective sample size is in-
creased using this design. The result of the two-method
measurement is typically to increase the effective sample
size without increasing costs. This will be a benefit in most
research scenarios regardless of sample size.
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